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What makes an estimator good?

Is (X′X)−1X′y a good estimate of β?

Would another estimator be better?

What would an alternative be?

Maybe minimizing the sum of absolute errors?

Or something nonlinear?

First we’ll have to decide what makes an estimator good.
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What makes an estimator good?

Some common criteria:

Bias The meaning of bias in statistics is more specific (and at
times at variance) with plain English.

It does not mean subjectivity.

Is the estimate β̂ provided by the model expected to equal the
true value β?

If not, how far off is it?

This is the bias, E(β̂ − β)

Although it seems “obvious” on face that we always prefer an
unbiased estimator if one is available we also want the
estimate to be close to the truth most of the time
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What makes an estimator good?

Unbiased methods are not perfect.

They usually still miss the truth by some amount,
But the direction in which they miss is not systematic or
known ahead of time.

Unbiased estimates can be useless.

Why?

One unbiased estimate of the time of day:a random draw from
the numbers 0–24. Utterly useless.

Biased estimates are not necessarily terrible.

A biased estimate of the time of day: a clock that is 2 minutes
fast.
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What makes an estimator good?

Efficiency:

Efficient estimators get closest to the truth on
average

Measures of efficiency answer the question:
How much do we miss the truth by on average?

Efficiency thus incorporates both bias and variance of
estimator.

A biased est with low variance may be “better” than an
unbiased high var est
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What makes an estimator good?

Efficiency: Efficient estimators get closest to the truth on
average

Some examples:

Unbiased? Efficient?
Stopped clock.
Random clock.
Clock that is “a lot fast”
Clock that is “a little fast”
A well-run atomic clock
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What makes an estimator good?

Efficiency: Efficient estimators get closest to the truth on
average

Some examples:

Unbiased? Efficient?
Stopped clock. No No
Random clock. Yes No
Clock that is “a lot fast” No No
Clock that is “a little fast” No Yes
A well-run atomic clock Yes Yes
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What makes an estimator good?

To measure efficiency, we use mean squared error:

MSE = E
[(

β − β̂
)2]

= Var(β̂) + Bias(β̂|β)2

√
MSE is how much you miss the truth by on average

In most cases, we want to use the estimator that minimizes
MSE
We will be especially happy when this is also an unbiased
estimator
But it won’t always be
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What makes an estimator good?

Consistency:

An estimator that converges to the truth as the
number of observations grows

Formally, E(β̂ − β) → 0 as N → ∞

Of great concern to many econometricians

Not as great a concern in political science (as a thought
experiment, N → ∞ doesn’t help much when the observations
are, say, industrialized countries)

We will be mainly concerned with efficiency, secondarily with
bias, and hardly at all with consistency
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What can go wrong in the linear model?

Two things that can go wrong:

• omitted variable bias
• specification bias

Another important source of bias is selection:

If we select observations non-randomly from the world, we
may get biased estimates of means, regression coefficients,
and other quantities
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What can go wrong in the linear model?

Another important source of bias is selection:

If we select observations non-randomly from the world, we
may get biased estimates of means, regression coefficients,
and other quantities

• Average children per marriage is 2.5. How many were in
your family growing up? Are these numbers different?
Who is “left out” in the second sample?

• In testimony to NY state senate, motorcyclists testified
that in their (multiple) crashes, helmets would not have
prevented injuries. Who didn’t testify?

• Regression example: Selection on the observed variables
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Selection bias
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Suppose we conducted a survey & asked people their income
(x) and conservatism (y)

With the full range of respondents, we find a strong
relationship
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But suppose high income (or highly conservative) people
decline to answer

Then we run a regression on the red dots only.

And get a result biased towards 0.
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Selection bias

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

→ Try to maximize variance of covariates, and avoid selecting
on response variables

Most selection is unintentional, so think hard about sources of
selection bias
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What else can go wrong in a linear regression?

Even if your data are sampled without bias from the population
of interest, and your model correctly specified, several data
problems can violate the linear regression assumptions

In order of declining severity:

Perfect collinearity

Endogeneity of covariates

Heteroskedasticity

Serial correlation

Non-normality

Lots of new jargon. Let’s work through it.
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Perfect Collinearity

Perfect collinearity occurs when X′X is singular; ie, the
determinant |X′X| = 0

Happens when two or more columns of X are linearly
dependent on each other

Common causes: including a variable twice, or a variable and
itself times a constant

Very rare—except in panel data, as we will see

Matrix inversion—and thus LS regression—is impossible here
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“Partial” Collinearity

What if our covariates are correlated but not perfectly so?

Then they are not linearly dependent

The regression coefficients are identified (a unique estimate
exists for each β)

Regression with partial collinearity is unbiased & efficient.

But if the correlation among the X’s is high, there is little to
distinguish them

This leads to noisy estimates and large standard errors

Those large se’s are correct
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“Partial” Collinearity

“Partial” Collinearity is actually an oxymoron.

Inappropriately, this situation is sometimes called
“multicollinearity”

Technically, multicollinearity describes only perfect linear
dependence

Linear regression does not“fail” when correlation among X is
“high”.

There is no “fix” for high correlation: it is not a statistical
problem.

Have highly correlated X and large se’s?
Then you lack sufficient data to precisely answer your research
question
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Exogenous & endogenous variables

So far, we have (implicitly) taken our regressors, X, as fixed

X is not dependent on Y

Fixed = pre-determined = exogenous

Y consists of a function of X plus an error

Y is thus endogenous to X

endogenous = “determined within the system”
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Exogenous & endogenous variables

What if Y helps determine X in the first place?

That is, what if there is reciprocal causation?

Very common in political science:

• campaign spending and share of the popular vote.
• policy attitudes and party identification
• arms races and war, etc.
• exchange rate policy and inflation

In these cases, Y and X are both endogenous

Least squares is biased in this case

It will remain biased even as you add more data

In other words, it is inconsistent, or biased even as N → ∞

19
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Heteroskedasticity: “Different variance”

Linear regression allows us to model the mean of a variable
well

Y could be any linear function of β and X

But LS always assumes the variance of that variable is the
same:

σ2, a constant

We don’t think Y has constant mean. Why expect constant
variance?

In fact, heteroskedasticity—non-constant error variance—is
very common

20



Heteroskedasticity: “Different variance”
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A common pattern of heteroskedasticity:
Variance and mean increase together

Here, they are both correlated with the covariate X
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Heteroskedasticity: “Different variance”
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In a fuzzy sense, X is a necessary but not sufficient condition
for Y

This is usually an important point substantively.
Heteroskedasticity is interesting, not just a nuisance
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Heteroskedasticity: “Different variance”
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We can usually find heteroskedasticity by plotting the
residuals against each covariate

Look for a pattern. Often a megaphone
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Heteroskedasticity: “Different variance”
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But other patterns are possible.

Above, there is a dramatic difference in variance in different
parts of the dataset
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Heteroskedasticity: “Different variance”
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The same diagnostic reveals this problem.

Heteroskedasticity of this type often appears in panel datasets,
where there are groups of observations from different units
that each share a variance
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Unpacking σ2

Every observation consists of a systematic component (xiβ)
and a stochastic component (εi)

Generally, we can think of the stochastic component as an
n-vector ε following a multivariate normal distribution:

ε ∼ MVN (0,Σ)

Aside: how the Multivariate Normal distribution works
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The Multivariate Normal distribution

Consider the simplest multivariate normal distribution,
the joint distribution of two normal variables x1 and x2

As usual, let µ indicate a mean, and σ a variance or covariance

X = MVN (µ,Σ)

[
x1
x2

]
= MVN

([
µ1
µ2

]
,

[
σ2
1 σ1,2

σ1,2 σ2
2

])

The MVN is more than the sum of its parts:
There is a mean and variance for each variable, and covariance
between each pair
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
0

]
,

[
1 0
0 1

])

28



The Multivariate Normal distribution

x1

x2

density

The standard MVN, with zero means, unit variances, and no
covariance, looks like a higher dimension version of the
normal: a symmetric mountain of probability
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
2

]
,

[
1 0
0 1

])
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The Multivariate Normal distribution

x1

x2

density

Shifting the mean of x2 moves the MVN in one dimension only
Mean shifts affect only one dimension at a time
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
2
2

]
,

[
1 0
0 1

])
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The Multivariate Normal distribution

x1

x2

density

We could, of course, move the means of our variables at the
same time.

This MVN says the most likely outcome is both x1 and x2 will be
near 2.0
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
0

]
,

[
0.33 0
0 1

])
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The Multivariate Normal distribution

x1

x2

density

Shrinking the variance of x1 moves the mass of probability
towards the mean of x1, but leaves the distribution around x2
untouched
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
0

]
,

[
0.33 0
0 3

])
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The Multivariate Normal distribution

x1

x2

density

Increasing the variance of x2 spreads the probability out,
so we are less certain of x2, but just as certain of x1 as before
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
0

]
,

[
0.33 0
0 0.33

])
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The Multivariate Normal distribution

x1

x2

density

If the variance is small on all dimensions, the distribution
collapses to a spike over the means of all variables
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The Multivariate Normal distribution

x1

x2

density

In this case, we are fairly certain of where all our variables
tend to lie

40



The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
0

]
,

[
1 0.8
0.8 1

])
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The Multivariate Normal distribution

x1

x2

density

In this special case, with unit variances, the covariance is also
the correlation, so our distribution say x1 and x2 are correlated
at r = 0.8
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The Multivariate Normal distribution

x1

x2

density

A positive correlation between our variables makes the MVN
asymmetric,
with greater mass on likely combinations
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The Multivariate Normal distribution

x1

x2

density

[
x1
x2

]
= MVN

([
0
0

]
,

[
1 −0.8

−0.8 1

])
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The Multivariate Normal distribution

x1

x2

density

A negative correlation makes mismatched values of our
covariates more likely
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The Multivariate Normal distribution

In our current example, we have a huge multivariate normal
distribtion:

each observation has its own mean and variance, and a
covariance with every other observation

Suppose we have four observations. The Var-cov matrix of the
disturbances is then

Σ =


σ2
1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4
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Unpacking σ2: homoskedastic case

In its most “ordinary” form, linear regression puts strict
conditions on the variance-variance matrix, Σ

Again, assuming we have only four observations, the Var-cov
matrix is

Σ = σ2I =


σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 σ2


Could treat each observation as consisting of xiβ and a
separate, univariate normal disturbance, each with the same
variance, σ2.

This is the usual linear regression set up

Will look like our first example MVN: a symmetric mountain,
but in many n+ 1 dimensions

We say that errors are “spherical” when this symmetry holds
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Unpacking σ2: heteroskedastic case

Suppose the distrurbances are heteroskedastic.

Now each observation has an error term drawn from a Normal
with its own variance

Σ =


σ2
1 0 0 0
0 σ2

2 0 0
0 0 σ2

3 0
0 0 0 σ2

4



Still no covariance across disturbances.

Even so, we now have more parameters than we can estimate.

If every observation has its own unknown variance, we cannot
estimate them

This MVN looks like the first example of a ridge: steeper in
some directions than others, but not “tilted”
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Unpacking σ2: heteroskedastic case

Heteroskedasticity does not bias least squares

But LS is inefficient in the presence of heteroskedasticity

More efficient estimators give greater weight to observations
with low variance

They pay more attention to the signal, and less attention to the
noise

Heteroskedasticity tends to make se’s incorrect, because they
depend on the estimate of σ2

Researchers often try to “fix” standard errors to deal with this

(more on this later)
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Unpacking σ2: heteroskedasticity & autocorrelation

Suppose each disturbance has its own variance, and may be
correlated with other disturbances

The most general case allows for both heteroskedasticity &
autocorrelation

Σ =


σ2
1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4


LS is unbiased but inefficient in this case

The standard errors will be wrong, however

Key application: time series.

Current period is usually a function of the past

If we fail to capture this dynamic, our errors will be correlated

(Here, MVN is the “tilted” ridge: any shape is possible)
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Gauss-Markov Conditions

So when is least squares unbiased?

When is it efficient?

When are the standard errors correct?
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To judge the performance of LS, we’ll need to make some assumptions

# Assumption Formal statement Consequence of violation

1 No (perfect) collinearity rank(X) = k, k < n Coefficients unidentified

2 X is exogenous E(Xε) = 0 Biased, even as N → ∞

3 Disturbances have mean 0 E(ε) = 0 Biased, even as N → ∞

4 No serial correlation E(εiεj) = 0, i ̸= j Unbiased but ineff.
se’s wrong

5 Homoskedastic errors E(ε′ε) = σ2I Unbiased but ineff.
se’s wrong

6 Gaussian error distrib ε ∼ N (0, σ2) se’s wrong unless N → ∞

(Assumptions get stronger from top to bottom, but 4 & 5 could be combined)
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# Assumption Formal statement Consequence of violation

1 No (perfect) collinearity rank(X) = k, k < n Coefficients unidentified

2 X is exogenous E(Xε) = 0 Biased, even as N → ∞

3 Disturbances have mean 0 E(ε) = 0 Biased, even as N → ∞

4 No serial correlation E(εiεj) = 0, i ̸= j Unbiased but ineff.
se’s wrong

5 Homoskedastic errors E(ε′ε) = σ2I Unbiased but ineff.
se’s wrong

6 Gaussian error distrib ε ∼ N (0, σ2)

se’s wrong unless N → ∞

(Assumptions get stronger from top to bottom, but 4 & 5 could be combined)
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Gauss-Markov Theorem

It is easy to show βLS is linear and unbiased, under Asps 1–3:

If y = Xβ + ε, E(ε) = 0, then by substitution

β̂LS = (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

So long as

• (X′X)−1 is uniquely identified,
• X is exogenous or at least uncorrelated with ε, and
• E(ε) = 0 (regardless of the distribution of ε)

Then E(β̂LS) = β

→ βLS is unbiased and a linear function of y.
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Gauss-Markov Theorem

If we make assumptions 1–5, we can make a stronger claim

When there is no serial correlation, no heteroskedasticity, no
endogeneity, and no perfect collinearity, then

Gauss-Markov holds that LS is the best linear unbiased
estimator (BLUE)

BLUE means that among linear estimators that are unbiased,
β̂LS has the least variance.

But, there might be a nonlinear estimator with lower MSE
overall, unless …

If in addition to Asp 1–5, the disturbances are normally
distributed (6), then

Gauss-Markov holds LS is Minimum Variance Unbiased (MVU)

MVU means that among all estimators that are unbiased, β̂LS
has the least variance.
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