
GOVT6029:
Advanced Regression Analysis

Problem Set 3
Due date: May 7

Sergio I Garcia-Rios

Investigating the Properties of Linear Regression Using Simulation
The purpose of this homework is to provide a guided, hands-on tour through the properties of the
least squares estimator, especially under common violations of the Gauss-Markov assumptions. We
will work through a series of programs which use simulated data – i.e., data created with known
properties – to investigate how these violations affect t he a ccuracy a nd p recision o f l east squares
estimates of slope parameters. Using repeated study of simulated datasets to explore the properties
of statistical models is called Monte Carlo experimentation.1

Although you will not have to write much R code, you will need to read through the provided
programs carefully to understand what is happening. (For this assignment only, I ask that you not
attach your code, since you will be making only small changes in long programs. You may find it
helpful to show just those few lines of code which you changed. Likewise, report only those results
and figures needed to answer the questions asked below.)

Getting Acquianted with the Basic Simulation Code
Open the file m cls.r, a nd r ead t hrough t he c ode c arefully. I r ecommend t hinking t hrough what
is happening line by line, perhaps even running pieces of the code and checking for yourself what
variables have been created (e.g., by printing the variables in memory).

You will note several new commands, such as for, rnorm(), mvrnorm(), etc. A brief guide to
these functions appears in Table 1.

1Monte Carlo experiments always produce the same results as analytic proofs for the specific case considered.
Each method has advantages and disadvantages: proofs are more general and elegant, but are not always possible.
MC experiments are much easier to construct and can always be carried out, but findings from these experiments
only apply to the specific scenario under study. Where proofs are available, they are generally preferable to MC
experiments, but proofs of the properties of more complicated models are sometimes impossible or impractically
difficult. This is almost always the case for the properties of models applied to small samples of data. Here, we
use Monte Carlo not out of necessity but for pedagogical purposes, as a tool to gain a more intuitive and hands-on
understanding of least squares and its properties.

1

Table 1: New R functions used in this homework.

Command Effect
for (i in a:b) {} Loop over the commands in {} once for each

element in the sequence a:b. On each itera-
tion of the loop, increment i by one.

rnorm(n) Take n draws from the standard Normal dis-
tribution, which has mean zero and standard
deviation one. To get draws from a Normal
with mean mu and standard deviation sigma,
use mu + sigma*rnorm(n)

mvrnorm(n,mu,Sigma) Function from the MASS library. Take n
draws from the Multivariate Normal with
means given by the vector mu and variance-
covariance matrix given by Sigma

apply(x,2,mean) Calculate the means of each column of x and
return them as a vector. (This function works
generally; to “apply” a different function, just
change mean to the desired function; to apply
that function over rows instead of columns,
change 2 to 1.)

density(x) Calculate a smoothed histogram of x, which
can then be plot()ed.

expression(math) Used to plot mathematical notation; see help
for the command text() for examples of syn-
tax of math

2

Careful study will reveal that mcls.r works through four steps:

1. Set up the joint distribution of x1, x2, and x3, which are multivariate normal with means
µX (denoted muX) and variance-covariance matrix ΣX (denoted SigmaX).2 Defines the true
values of β (denoted b) and σ (denoted sigma), to be used in step 2.

2. Loop over sims simulation runs, at each iteration drawing n observations of x1, x2, and x3

(collected in the matrix X), from which y (denoted y) is generated as:

yi = β0 + β1x1i + β2x2i + β3x3i + ϵi

where ϵi is a draw from the Normal distribution with mean 0 and variance σ2.

3. At the end of each simulation run, find the least squares estimates of the β’s above, and save
them, along with their standard errors and t-statistics.

4. After the simulation runs are complete, print the average estimates, standard errors, and
t-statistics, comparing each to the “true” values. Then plot the distributions of the estimated
β̂’s, again comparing to the truth.

An example will help explain the output from step 4. If we run mcls.r at its default settings
(which correspond to an ideal case in which the Gauss-Markov assumptions hold, and there is no
omitted variable or selection bias), we obtain the following text output:

True parameters
1 2 3 4

Average LS estimate across 1000 simulation runs
(Intercept) X1 X2 X3

1.000479 1.992530 3.000542 3.989724

The above shows that on average across 1000 simulations, linear regression recovered the true
values of the intercept and three slope coefficients almost exactly, despite not knowing these true
values. Linear regression works, and without bias, at least under ideal conditions.

Of course, in any particular regression, our estimates may be off from their expected values.
The standard error is an estimate of how far off we can expect regression estimates to be – but is
the standard error itself well estimated? It should match the standard deviation of estimates of β
across different samples of data from the same distribution.

True standard errors across 1000 simulation runs
(Intercept) X1 X2 X3
0.1408317 0.1447928 0.1417090 0.1491686

Average estimated standard errors across 1000 simulation runs
2That is, we create a set of covariates which are jointly Normal, X = MVN (µX ,ΣX).

3

(Intercept) X1 X2 X3
0.1435155 0.1451408 0.1448281 0.1452036

Comparing the average standard error with the “true” standard deviation across β̂’s shows that
under ideal conditions, linear regression also produces unbiased estimates of its own error.

Because the t-statistic is just the ratio of the estimated β to its standard error, it too should
be well estimated on average – as we can see below.

[1] "True t-stat across 1000 simulation runs"
(Intercept) X1 X2 X3

7.100677 13.812843 21.170141 26.815302
[1] "Average estimated t-stat across 1000 simulation runs"
(Intercept) X1 X2 X3

6.971224 13.728258 20.717954 27.476750

We also receive Figure 1 as a pdf file.

0 1 2 3 4 5 6 7 8

0
1

2
3

4

LS with Uncorrelated X's

D
en

si
ty

Trueβ1 Trueβ2 Trueβ3

β̂1 β̂2
β̂3

Figure 1: The true and estimated linear regression coefficients under ideal conditions across 1000
simulated datasets. Vertical marks indicate the true coefficients used to generate the 1000 datasets.
The distribution of least squares estimated coefficients across the 1000 datasets are shown as shaded
regions. The distribution of estimates implied by the average estimated standard error is superim-
posed as a solid line, and matches the actual distribution of estimates almost exactly.

Moving Beyond the Default Simulation Settings

The default settings in mcls.r create three uncorrelated covariates (note the default SigmaX) and
generate y from them using the “true” model,

yi = 1 + 2x1i + 3x2i + 4x3i + ϵi, ϵi ∼ N (0, 2).

4

Then we attempt to recover these specific true β’s by regressing y on x1, x2, and x3.
We will use mcls.r as a template to explore when regression works and when and how it

fails. By changing the settings in the first and second part of the code, we can estimate the linear
regression model using different types of data, and see the consequences of different data problems
on estimation bias and efficiency. By changing the third part of the code, we can change the model
used, to compare the performance of different least squares models applied to the same data. You
will be provided alternative versions of the code to accomplish this, but will also be asked to make
some changes to the code on your own.

5

Problems to Solve

Now that we have read through the code, we are ready to begin.

a. Run mcls.r using its default settings. Make a note of the results. Rerun the program three times,
setting the correlation of x1 and x2 to 0.5, 0.9, and 0.99, respectively.3 Based on the results from
these runs, what can you say about the effect of partial collinearity on least squares estimates? In
particular, does raising the correlation of x1 and x2 add bias to our estimates of β1, β2, or β3? Does
raising the correlation of x1 and x2 affect the precision of estimates of β1, β2, or β3?

b. Set the correlation of x1 and x2 to 1, and rerun mcls.r. What has happened, and why? It will
help to look at the summary of the regression results for the last run, using print(summary(res)).

c. Now open the program mcovb.r in your text editor. Note that this program is identical to mcls.r,
with one exception. When this program runs lm(), it omits x2 from the regression. Now run the
program at its default settings, with the correlation of x1 and x2 set to 0. What effect does the
omission of x2 have on the bias and precision of the estimates of β1 and β3?

d. Set the correlation of x1 and x2 to 0.9, and rerun mcovb.r. Now what effect does the omission of x2

have on the bias and precision of the estimates of β1 and β3? Do our findings differ from those in
part c? Why?

e. Finally, keep the correlation of x1 and x2 at 0.9, but rewrite mcovb.r to run the regression of y on
x1 and x2, omitting x3. What effect does the omission of x3 have on the bias and precision of the
estimates of β1 and β2?

f. What explains the differences in your results across parts c, d, and e? Based on these results,
and your findings in part a, how would you recommend users of least squares deal with highly
correlated covariates?

g. Open the program mcselect.r in your text editor. Note that this program is identical to mcls.r,
except now, all observations in which y is greater than its sample mean are deleted prior to
running the regression. What effect does selection on y have on the bias and precision of the
estimates of β1, β2, and β3?

h. Open the program mchet.r in your text editor. Note that this program is identical to mcls.r,
except the structure of sigma has changed. In this simulation, we will assume the data yi are
Normally distributed such that

yi ∼ N (µi, σ
2
i),

µi = β0 + β1x1i + β2x2i + β3x3i, and
σ2
i = exp(γ0 + γ1x1i).

3Be careful that you set SigmaX to possible values only. This matrix must always be symmetric, so to set the
covariance of x1 and x2 to 0.5, you must set both SigmaX[2,1] and SigmaX[1,2] to 0.5.

6

That is, our data are heteroskedastic. (The γ’s are set in a vector called g.)

Run mchet.r under its default setting, which sets γ0 = log(2) and γ1 = 0. Confirm that under
these settings, y is still homoskedastic. Note the result. Now try adding heteroskedasticity
by increasing γ1 to 1. Confirm that changing this setting has made y heteroskedastic. What
effect does this added heteroskedasticity have on our results?

i. Open the program mcautocor.r in your text editor. Note that this program is identical to
mcls.r, except for two differences. First, y now depends on the present and past error term:

yi = β0 + β1x1i + β2x2i + β3x3i + ρϵi−1 + ϵi.

This is a moving average process of order 1, or MA(1). If ρ ̸= 0, the yi’s will be serially
correlated.

Second, the present value of the kth covariate, xk,i, now depends on the random part of the
past value of the covariate, xk,i−1, such that

xk,i = µxk
+ ρxk

ϵxk,i−1
+ ϵxk,i

.

This is also a moving average process of order 1, or MA(1). If ρxk
̸= 0 for some k, that xk

will also be serially correlated.

Run mcautocor.r under its default settings, with ρ = 0 and ρxk
= 0 for all covariates k.

Note the results. Rerun it twice: first set ρ = 0.5 and ρxk
= 0.5 for all k; then set ρ = 0.9

and ρxk
= 0.9 for all k. Based on the results from these runs, what can you say about the

effect of serial correlation on least squares estimates? Experimenting further, what happens
if you have serial correlation in y but not in X, or vice versa?

j. Come up with a question about the properties of least squares to investigate using one or more
of the provided programs, or modifications thereof. Illustrate the answer to your question by
running the program(s) under different settings, and comparing results.

An example question:

Which of the problems identified in this homework can be mitigated by gathering
more data (e.g., by setting n=1000, instead of n=100), and which problems will stay
just as severe no matter how much data are collected?

You are welcome to answer the example question for full credit, but will receive bonus points
for formulating your own.

7

