
Chapter 3

Making Regression Make Sense

�Let us think the unthinkable, let us do the undoable.

Let us prepare to grapple with the ine¤able itself,

and see if we may not e¤ it after all.�

Douglas Adams, Dirk Gently�s Holistic Detective Agency (1990)

Angrist recounts:

I ran my �rst regression in the summer of 1979 between my freshman and sophomore years

as a student at Oberlin College. I was working as a research assistant for Allan Meltzer and

Scott Richard, faculty members at Carnegie-Mellon University, near my house in Pittsburgh. I

was still mostly interested in a career in special education, and had planned to go back to work

as an orderly in a state mental hospital, my previous summer job. But Econ 101 had got me

thinking, and I could also see that at the same wage rate, a research assistant�s hours and working

conditions were better than those of a hospital orderly. My research assistant duties included

data collection and regression analysis, though I did not understand regression or even statistics

at the time.

The paper I was working on that summer (Meltzer and Richard, 1983), is an attempt to

link the size of governments in democracies, measured as government expenditure over GDP, to

income inequality. Most income distributions have a long right tail, which means that average

income tends to be way above the median. When inequality grows, more voters �nd themselves

with below-average incomes. Annoyed by this, those with incomes between the median and

the average may join those with incomes below the median in voting for �scal policies which

- following Robin Hood - take from the rich and give to the poor. The size of government

consequently increases.

I absorbed the basic theory behind the Meltzer and Richards project, though I didn�t �nd it
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22 CHAPTER 3. MAKING REGRESSION MAKE SENSE

all that plausible, since voter turnout is low for the poor. I also remember arguing with Alan

Meltzer over whether government expenditure on education should be classi�ed as a public good

(something that bene�ts everyone in society as well as those directly a¤ected) or a private good

publicly supplied, and therefore a form of redistribution like welfare. You might say this project

marked the beginning of my interest in the social returns to education, a topic I went back to

with more enthusiasm and understanding in Acemoglu and Angrist (2000).

Today, I understand the Meltzer and Richard (1983) study as an attempt to use regression

to uncover and quantify an interesting causal relation. At the time, however, I was purely a

regression mechanic. Sometimes I found the RA work depressing. Days would go by where I

didn�t talk to anybody but my bosses and the occasional Carnegie-Mellon Ph.D. student, most

of whom spoke little English anyway. The best part of the job was lunch with Alan Meltzer, a

distinguished scholar and a patient and good-natured supervisor, who was happy to chat while

we ate the contents of our brown-bags (this did not take long as Allan ate little and I ate fast).

I remember asking Allan whether he found it satisfying to spend his days perusing regression

output, which then came on reams of double-wide green-bar paper. Meltzer laughed and said

there was nothing he would rather be doing.

Now, we too spend our days (at least, the good ones) happily perusing regression output, in the manner

of our teachers and advisors in college and graduate school. This chapter explains why.

3.1 Regression Fundamentals

The end of the previous chapter introduces regression models as a computational device for the estimation

of treatment-control di¤erences in an experiment, with and without covariates. Because the regressor of

interest in the class size study discussed in Section 2.3 was randomly assigned, the resulting estimates have

a causal interpretation. In most cases, however, regression is used with observational data. Without the

bene�t of random assignment, regression estimates may or may not have a causal interpretation. We return

to the central question of what makes a regression causal later in this chapter.

Setting aside the relatively abstract causality problem for the moment, we start with the mechanical

properties of regression estimates. These are universal features of the population regression vector and its

sample analog that have nothing to do with a researcher�s interpretation of his output. This chapter begins

by reviewing these properties, which include:

(i) the intimate connection between the population regression function and the conditional expectation

function

(ii) how and why regression coe¢ cients change as covariates are added or removed from the model

(iii) the close link between regression and other "control strategies" such as matching
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(iv) the sampling distribution of regression estimates

3.1.1 Economic Relationships and the Conditional Expectation Function

Empirical economic research in our �eld of Labor Economics is typically concerned with the statistical

analysis of individual economic circumstances, and especially di¤erences between people that might account

for di¤erences in their economic fortunes. Such di¤erences in economic fortune are notoriously hard to

explain; they are, in a word, random. As applied econometricians, however, we believe we can summarize and

interpret randomness in a useful way. An example of �systematic randomness�mentioned in the introduction

is the connection between education and earnings. On average, people with more schooling earn more

than people with less schooling. The connection between schooling and average earnings has considerable

predictive power, in spite of the enormous variation in individual circumstances that sometimes clouds this

fact. Of course, the fact that more educated people earn more than less educated people does not mean that

schooling causes earnings to increase. The question of whether the earnings-schooling relationship is causal

is of enormous importance, and we will come back to it many times. Even without resolving the di¢ cult

question of causality, however, it�s clear that education predicts earnings in a narrow statistical sense. This

predictive power is compellingly summarized by the conditional expectation function (CEF).

The CEF for a dependent variable, yi given a k�1 vector of covariates, Xi (with elements xki) is the

expectation, or population average of yi with Xi held �xed. The population average can be thought of as the

mean in an in�nitely large sample, or the average in a completely enumerated �nite population. The CEF

is written E [yijXi] and is a function of Xi. Because Xi is random, the CEF is random, though sometimes

we work with a particular value of the CEF, say E[yijXi=42], assuming 42 is a possible value for Xi. In

Chapter 2, we brie�y considered the CEF E[yijdi], where di is a zero-one variable. This CEF takes on two

values, E[yijdi = 1] and E[yijdi = 0]: Although this special case is important, we are most often interested

in CEFs that are functions of many variables, conveniently subsumed in the vector, Xi: For a speci�c value

of Xi, say Xi = x, we write E [yijXi = x]. For continuous yi with conditional density fy (�jXi = x), the

CEF is

E [yijXi = x] =

Z
tfy (tjXi = x) dt:

If yi is discrete, E [yijXi = x] equals the sum
P
t tfy (tjXi = x).

Expectation is a population concept. In practice, data usually come in the form of samples and rarely

consist of an entire population. We therefore use samples to make inferences about the population. For

example, the sample CEF is used to learn about the population CEF. This is always necessary but we

postpone a discussion of the formal inference step taking us from sample to population until Section 3.1.3.

Our �population �rst�approach to econometrics is motivated by the fact that we must de�ne the objects of
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interest before we can use data to study them.1

Figure 3.1.1 plots the CEF of log weekly wages given schooling for a sample of middle-aged white men

from the 1980 Census. The distribution of earnings is also plotted for a few key values: 4, 8, 12, and 16 years

of schooling. The CEF in the �gure captures the fact that� the enormous variation individual circumstances

notwithstanding� people with more schooling generally earn more, on average. The average earnings gain

associated with a year of schooling is typically about 10 percent.

Figure 3.1.1: Raw data and the CEF of average log weekly wages given schooling. The sample includes

white men aged 40-49 in the 1980 IPUMS 5 percent �le.

An important complement to the CEF is the law of iterated expectations. This law says that an

unconditional expectation can be written as the population average of the CEF. In other words

E [yi] = EfE [yijXi]g; (3.1.1)

where the outer expectation uses the distribution of Xi. Here is proof of the law of iterated expectations

for continuously distributed (Xi;yi) with joint density fxy (u; t), where fy (tjXi = x) is the conditional

1Examples of pedagogical writing using the �population-�rst�approach to econometrics include Chamberlain (1984), Gold-

berger (1991), and Manski (1991).
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distribution of yi given Xi = x and gy(t) and gx(u) are the marginal densities:

EfE [yijXi]g =

Z
E [yijXi = u] gx(u)du

=

Z �Z
tfy (tjXi = u) dt

�
gx(u)du

=

Z Z
tfy (tjXi = u) gx(u)dudt

=

Z
t

�Z
fy (tjXi = u) gx(u)du

�
dt =

Z
t

�Z
fxy (u; t) du

�
dt

=

Z
tgy(t)dt:

The integrals in this derivation run over the possible values of Xi and yi (indexed by u and t). We�ve laid

out these steps because the CEF and its properties are central to the rest of this chapter.

The power of the law of iterated expectations comes from the way it breaks a random variable into two

pieces.

Theorem 3.1.1 The CEF-Decomposition Property

yi = E [yijXi] + "i,

where (i) "i is mean-independent of Xi, i.e., E["ijXi] = 0;and, therefore, (ii) "i is uncorrelated with any

function of Xi.

Proof. (i) E["ijXi] = E[yi � E [yijXi] j Xi] = E [yijXi] � E [yijXi] = 0;(ii) This follows from (i): Let

h(Xi) be any function of Xi. By the law of iterated expectations, E[h(Xi)"i] = Efh(Xi)E["ijXi]g and by

mean-independence, E["ijXi] = 0:

This theorem says that any random variable, yi, can be decomposed into a piece that�s �explained by

Xi�, i.e., the CEF, and a piece left over which is orthogonal to (i.e., uncorrelated with) any function of Xi.

The CEF is a good summary of the relationship between yi and Xi for a number of reasons. First, we

are used to thinking of averages as providing a representative value for a random variable. More formally,

the CEF is the best predictor of yi given Xi in the sense that it solves a Minimum Mean Squared Error

(MMSE) prediction problem. This CEF-prediction property is a consequence of the CEF-decomposition

property:

Theorem 3.1.2 The CEF-Prediction Property.

Let m (Xi) be any function of Xi. The CEF solves

E [yijXi] = argmin
m(Xi)

E
h
(yi �m (Xi))2

i
;

so it is the MMSE predictor of yi given Xi:



26 CHAPTER 3. MAKING REGRESSION MAKE SENSE

Proof. Write

(yi �m (Xi))2 = ((yi � E [yijXi]) + (E [yijXi]�m (Xi)))2

= (yi � E [yijXi])2 + 2 (E [yijXi]�m (Xi)) (yi � E [yijXi])

+ (E [yijXi]�m (Xi))2

The �rst term doesn�t matter because it doesn�t involve m (Xi). The second term can be written h(Xi)"i,

where h(Xi) � 2 (E [yijXi]�m (Xi)), and therefore has expectation zero by the CEF-decomposition prop-

erty. The last term is minimized at zero when m (Xi) is the CEF.

A �nal property of the CEF, closely related to both the CEF decomposition and prediction properties,

is the Analysis-of-Variance (ANOVA) Theorem:

Theorem 3.1.3 The ANOVA Theorem

V (yi) = V (E [yijXi]) + E [V (yijXi)]

where V (�) denotes variance and V (yijXi) is the conditional variance of yi given Xi:

Proof. The CEF-decomposition property implies the variance of yi is the variance of the CEF plus the

variance of the residual, "i � yi � E [yijXi] since "i and E [yijXi] are uncorrelated. The variance of "i is

E
�
"2i
�
= E

�
E
�
"2i jXi

��
= E [V [yijXi]]

where E
�
"2i jXi

�
= V [yijXi] because "i � yi � E [yijXi].

The two CEF properties and the ANOVA theorem may have a familiar ring. You might be used to

seeing an ANOVA table in your regression output, for example. ANOVA is also important in research on

inequality where labor economists decompose changes in the income distribution into parts that can be

accounted for by changes in worker characteristics and changes in what�s left over after accounting for these

factors (See, e.g., Autor, Katz, and Kearney, 2005). What may be unfamiliar is the fact that the CEF

properties and ANOVA variance decomposition work in the population as well as in samples, and do not

turn on the assumption of a linear CEF. In fact, the validity of linear regression as an empirical tool does

not turn on linearity either.

3.1.2 Linear Regression and the CEF

So what�s the regression you want to run?

In our world, this question or one like it is heard almost every day. Regression estimates provide a valuable

baseline for almost all empirical research because regression is tightly linked to the CEF, and the CEF
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provides a natural summary of empirical relationships. The link between regression functions � i.e., the

best-�tting line generated by minimizing expected squared errors � and the CEF can be explained in at

least 3 ways. To lay out these explanations precisely, it helps to be precise about the regression function we

have in mind. This chapter is concerned with the vector of population regression coe¢ cients, de�ned as the

solution to a population least squares problem. At this point, we are not worried about causality. Rather,

we let the k�1 regression coe¢ cient vector � be de�ned by solving

� = argmin
b

E
h�
yi �X0ib

�2i
: (3.1.2)

Using the �rst-order condition,

E
�
Xi
�
yi �X0ib

��
= 0.

the solution for b can be written � = E
�
XiX

0
i

��1
E [Xiyi]. Note that by construction, E

�
Xi
�
yi �X0i�

��
=

0: In other words, the population residual, which we de�ne as yi�X0i� = ei, is uncorrelated with the

regressors, Xi. It bears emphasizing that this error term does not have a life of its own. It owes its

existence and meaning to �:

In the simple bivariate case where the regression vector includes only the single regressor, xi, and a

constant, the slope coe¢ cient is �1 =
Cov(yi;xi)
V (xi)

, and the intercept is � = E [yi]��1E [Xi]. In the multivariate

case, i.e., with more than one non-constant regressor, the slope coe¢ cient for the k-th regressor is given below:

REGRESSION ANATOMY

�k =
Cov (yi; ~xki)
V (~xki)

; (3.1.3)

where ~xki is the residual from a regression of xki on all the other covariates.

In other words, E
�
XiX

0
i

��1
E [Xiyi] is the k�1 vector with k-th element Cov(yi;~xki)

V (~xki)
. This important

formula is said to describe the �anatomy of a multivariate regression coe¢ cient� because it reveals much

more than the matrix formula � = E
�
XiX

0
i

��1
E [Xiyi] : It shows us that each coe¢ cient in a multivariate

regression is the bivariate slope coe¢ cient for the corresponding regressor, after "partialling out" all the

other variables in the model.

To verify the regression-anatomy formula, substitute

yi = �0 + �1x1i + :::+ �kxki + :::+ �kxki + ei

in the numerator of (3.1.3). Since ~xki is a linear combination of the regressors, it is uncorrelated with ei:

Also, since ~xki is a residual from a regression on all the other covariates in the model, it must be uncorrelated

these covariates. Finally, for the same reason, the covariance of ~xki with xki is just the variance of ~xki. We
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therefore have that Cov (yi; ~xki) = �kV (~xki) :
2

The regression-anatomy formula is probably familiar to you from a regression or statistics course, perhaps

with one twist: the regression coe¢ cients de�ned in this section are not estimators, but rather they are non-

stochastic features of the joint distribution of dependent and independent variables. The joint distribution

is what you would observe if you had a complete enumeration of the population of interest (or knew the

stochastic process generating the data). You probably don�t have such information. Still, it�s kosher� even

desirable� to think about what a set of population parameters might mean, without initially worrying about

how to estimate them.

Below we discuss three reasons why the vector of population regression coe¢ cients might be of interest.

These reasons can be summarized by saying that you are interested in regression parameters if you are

interested in the CEF.

Theorem 3.1.4 The Linear CEF Theorem (Regression-justi�cation I)

Suppose the CEF is linear. Then the population regression function is it.

Proof. Suppose E [yijXi] =X0i�
� for a k�1 vector of coe¢ cients, ��. Recall that E [Xi (yi � E [yijXi])] = 0

by the CEF-decomposition property. Substitute using E [yijXi] =X0i�
� to �nd that �� = E

�
XiX

0
i

��1
E [Xiyi] =

�.

The linear CEF theorem raises the question of under what circumstances a CEF is linear. The classic

scenario is joint Normality, i.e., the vector (yi; x0i)
0 has a multivariate Normal distribution. This is the

scenario considered by Galton (1886), father of regression, who was interested in the intergenerational link

between Normally distributed traits such as height and intelligence. The Normal case is clearly of limited

empirical relevance since regressors and dependent variables are often discrete, while Normal distributions

are continuous. Another linearity scenario arises when regression models are saturated. As reviewed in

Section 3.1.4, the saturated regression model has a separate parameter for every possible combination of

values that the set of regressors can take on. For example a saturated regression model with two dummy

covariates includes both covariates (with coe¢ cients known as the main e¤ects) and their product (known

as an interaction term). Such models are inherently linear, a point we also discuss in Section 3.1.4.

2The regression-anatomy formula is usually attributed to Frisch and Waugh (1933). You can also do regression anatomy

this way:

�k =
Cov (�yki; ~xki)

V (~xki)
;

where �yki is the residual from a regression of yi on every covariate except xki. This works because the �tted values removed

from �yki are uncorrelated with ~xki. Often it�s useful to plot �yki against ~xki; the slope of the least-squares �t in this scatterplot

is your estimate of the multivariate �k, even though the plot is two-dimensional. Note, however, that it�s not enough to partial

the other covariates out of yi only. That is,

Cov (�yki; xki)

V (xki)
=

�
Cov (�yki; ~xki)

V (~xki)

� �
V (~xki)

V (xki)

�
6= �k;

unless xki is uncorrelated with the other covariates.
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The following two reasons for focusing on regression are relevant when the linear CEF theorem does not

apply.

Theorem 3.1.5 The Best Linear Predictor Theorem (Regression-justi�cation II)

The function X0i� is the best linear predictor of yi given Xi in a MMSE sense.

Proof. � = E[XiX0i]
�1E[Xiyi] solves the population least squares problem, (3.1.2).

In other words, just as the CEF, E [yijXi], is the best (i.e., MMSE) predictor of yi given Xi in the

class of all functions of Xi, the population regression function is the best we can do in the class of linear

functions.

Theorem 3.1.6 The Regression-CEF Theorem (Regression-justi�cation III)

The function X0i� provides the MMSE linear approximation to E[yijXi], that is,

� = argmin
b

Ef(E[yijXi]�X0ib)2g: (3.1.4)

Proof. Write

�
yi �X0ib

�2
= f(yi � E[yijXi]) + (E[yijXi]�X0ib)g2

= (yi � E[yijXi])2 + (E[yijXi]�X0ib)2

+2(yi � E[yijXi])(E[yijXi]�X0ib):

The �rst term doesn�t involve b and the last term has expectation zero by the CEF-decomposition property

(ii). The CEF-approximation problem, (3.1.4), therefore has the same solution as the population least

squares problem, (3.1.2).

These two theorems show us two more ways to view regression. Regression provides the best linear

predictor for the dependent variable in the same way that the CEF is the best unrestricted predictor of the

dependent variable. On the other hand, if we prefer to think about approximating E[yijXi], as opposed to

predicting yi, the Regression-CEF theorem tells us that even if the CEF is nonlinear, regression provides

the best linear approximation to it.

The regression-CEF theorem is our favorite way to motivate regression. The statement that regression

approximates the CEF lines up with our view of empirical work as an e¤ort to describe the essential features

of statistical relationships, without necessarily trying to pin them down exactly. The linear CEF theorem

is for special cases only. The best linear predictor theorem is satisfyingly general, but it encourages an

overly clinical view of empirical research. We�re not really interested in predicting individual yi; it�s the

distribution of yi that we care about.

Figure 3.1.2 illustrates the CEF approximation property for the same schooling CEF plotted in Figure

3.1.1. The regression line �ts the somewhat bumpy and nonlinear CEF as if we were estimating a model
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for E[yijXi] instead of a model for yi. In fact, that is exactly what�s going on. An implication of the

regression-CEF theorem is that regression coe¢ cients can be obtained by using E[yijXi] as a dependent

variable instead of yi itself. To see this, suppose that Xi is a discrete random variable with probability mass

function, gx(u) when Xi = u. Then

Ef(E[yijXi]�X0ib)2g =
X
u

(E[yijXi = u]� u0b)2gx(u):

This means that � can be constructed from the weighted least squares regression of E[yijXi = u] on u,

where u runs over the values taken on by Xi. The weights are given by the distribution of Xi, i.e., gx(u)

when Xi = u: Another way to see this is to iterate expectations in the formula for �:

� = E[XiX
0
i]
�1E[Xiyi] = E[XiX

0
i]
�1E[XiE(yijXi)]: (3.1.5)

The CEF or grouped-data version of the regression formula is of practical use when working on a project

that precludes the analysis of micro data. For example, Angrist (1998), studies the e¤ect of voluntary

military service on earnings later in life. One of the estimation strategies used in this project regresses

civilian earnings on a dummy for veteran status, along with personal characteristics and the variables used

by the military to screen soldiers. The earnings data come from the US Social Security system, but Social

Security earnings records cannot be released to the public. Instead of individual earnings, Angrist worked

with average earnings conditional on race, sex, test scores, education, and veteran status.

An illustration of the grouped-data approach to regression appears below. We estimated the schooling

coe¢ cient in a wage equation using 21 conditional means, the sample CEF of earnings given schooling. As

the Stata output reported here shows, a grouped-data regression, weighted by the number of individuals

at each schooling level in the sample, produces coe¢ cients identical to what would be obtained using the

underlying microdata sample with hundreds of thousands of observations. Note, however, that the standard

errors from the grouped regression do not correctly re�ect the asymptotic sampling variance of the slope

estimate in repeated micro-data samples; for that you need an estimate of the variance of yi�X0i�. This

variance depends on the microdata, in particular, the second-moments of Wi �
�
yi; X0i

�0
, a point we

elaborate on in the next section.

3.1.3 Asymptotic OLS Inference

In practice, we don�t usually know what the CEF or the population regression vector is. We therefore draw

statistical inferences about these quantities using samples. Statistical inference is what much of traditional

econometrics is about. Although this material is covered in any Econometrics text, we don�t want to skip the

inference step completely. A review of basic asymptotic theory allows us to highlight the important fact that

the process of statistical inference is entirely distinct from the question of how a particular set of regression
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Figure 3.1.2 - A conditional expectation function and weighted regression line

Figure 3.1.2: Regression threads the CEF of average weekly wages given schooling

estimates should be interpreted. Whatever a regression coe¢ cient may mean, it has a sampling distribution

that is easy to describe and use for statistical inference.3

We are interested in the distribution of the sample analog of

� = E[XiX
0
i]
�1E[Xiyi]

in repeated samples. Suppose the vector Wi �
�
yi; X0i

�0
is independently and identically distributed in

a sample of size N . A natural estimator of the �rst population moment, E[Wi], is the sum, 1
N

PN
i=1Wi. By

the law of large numbers, this sample moment gets arbitrarily close to the corresponding population moment

as the sample size grows. We might similarly consider higher-order moments of the elements of Wi, e.g.,

the matrix of second moments, E[WiW
0
i ], with sample analog

1
N

PN
i=1WiW

0
i . Following this principle, the

method of moments estimator of � replaces each expectation by a sum. This logic leads to the Ordinary

Least Squares (OLS) estimator

�̂ =

"X
i

XiX
0
i

#�1X
i

Xiyi.

Although we derived �̂ as a method of moments estimator, it is called the OLS estimator of � because it

solves the sample analog of the least-squares problem described at the beginning of Section 3.1.2.4

3The discussion of asymptotic OLS inference in this section is largely a condensation of material in Chamberlain (1984).

Important pitfalls and problems with this asymptotic theory are covered in the last chapter.
4Econometricians like to use matrices because the notation is so compact. Sometimes (not very often) we do too. Suppose
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A - Individual-level data

. regress earnings school, robust

      Source |       SS       df       MS        Number of obs =  409435

-------------+------------------------------     F(  1,409433) =49118.25

       Model | 22631.4793      1  22631.4793     Prob > F      =  0.0000

    Residual |  188648.31 409433  .460755019     R-squared     =  0.1071

-------------+------------------------------     Adj R-squared =  0.1071

       Total | 211279.789 409434   .51602893     Root MSE      =  .67879

-------------+----------------------------------------------------------
             |               Robust                  Old Fashioned      

    earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0003447   195.63          .0003043   221.63

      const. |   5.835761   .0045507  1282.39          .0040043  1457.38
------------------------------------------------------------------------

B - Means by years of schooling

. regress average_earnings school [aweight=count], robust

(sum of wgt is   4.0944e+05)

      Source |       SS       df       MS        Number of obs =      21

-------------+------------------------------     F(  1,    19) =  540.31

       Model |  1.16077332     1  1.16077332     Prob > F      =  0.0000

    Residual |  .040818796    19  .002148358     R-squared     =  0.9660

-------------+------------------------------     Adj R-squared =  0.9642

       Total |  1.20159212    20  .060079606     Root MSE      =  .04635

-------------+----------------------------------------------------------
     average |               Robust                  Old Fashioned      

   _earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0040352    16.71         .0029013     23.24

      const. |   5.835761   .0399452   146.09         .0381792    152.85
------------------------------------------------------------------------

Figure 3.1.3: Micro-data and grouped-data estimates of returns to schooling. Source: 1980 Census - IPUMS,

5 percent sample. Sample is limited to white men, age 40-49. Derived from Stata regression output. Old-

fashioned standard errors are the default reported. Robust standard errors are heteroscedasticity-consistent.

Panel A uses individual-level data. Panel B uses earnings averaged by years of schooling.
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The asymptotic sampling distribution of �̂ depends solely on the de�nition of the estimand (i.e., the

nature of the thing we�re trying to estimate, �) and the assumption that the data constitute a random

sample. Before deriving this distribution, it helps to record the general asymptotic distribution theory that

covers our needs. This basic theory can be stated mostly in words. For the purposes of these statements,

we assume the reader is familiar with the core terms and concepts of statistical theory (e.g., moments,

mathematical expectation, probability limits, and asymptotic distributions). For de�nitions of these terms

and a formal mathematical statement of the theoretical propositions given below, see, e.g., Knight (2000).

THE LAW OF LARGE NUMBERS Sample moments converge in probability to the corresponding

population moments. In other words, the probability that the sample mean is close to the population

mean can be made as high as you like by taking a large enough sample.

THE CENTRAL LIMIT THEOREM Sample moments are asymptotically Normally distributed (after

subtracting the corresponding population moment and multiplying by the square root of the sample

size). The covariance matrix is given by the variance of the underlying random variable. In other

words, in large enough samples, appropriately normalized sample moments are approximately Normally

distributed.

SLUTSKY�S THEOREM

(a) Consider the sum of two random variables, one of which converges in distribution and the other converges

in probability to a constant: the asymptotic distribution of this sum is una¤ected by replacing the

one that converges to a constant by this constant. Formally, let aN be a statistic with a limiting

distribution and let bN be a statistic with probability limit b. Then aN + bN and aN + b have the same

limiting distribution.

(b) Consider the product of two random variables, one of which converges in distribution and the other

converges in probability to a constant: the asymptotic distribution of this product is una¤ected by

replacing the one that converges to a constant by this constant. This allows us to replaces some

sample moments by population moments (i.e., by their probability limits) when deriving distributions.

Formally, let aN be a statistic with a limiting distribution and let bN be a statistic with probability

limit b. Then aNbN and aNb have the same asymptotic distribution.

THE CONTINUOUS MAPPING THEOREM Probability limits pass through continuous functions.

For example, the probability limit of any continuous function of a sample moment is the function

evaluated at the corresponding population moment. Formally, the probability limit of h(bN ) is h(b)

where plim bN = b and h(�) is continuous at b.
X is the matrix whose rows are given by X0

i and y is the vector with elements yi, for i = 1; :::; N . The sample moment

1
N

P
XiX

0
i is X

0X=N and the sample moment 1
N

P
Xiyi is X0y=N . Then we can write �̂ = (X0X)�1X0y, a familiar matrix

formula.
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THE DELTA METHOD Consider a vector-valued random variable that is asymptotically Normally dis-

tributed. Most scalar functions of this random variable are also asymptotically Normally distributed,

with covariance matrix given by a quadratic form with the covariance matrix of the random variable

on the inside and the gradient of the function evaluated at the probability limit of the random vari-

able on the outside. Formally, the asymptotic distribution of h(bN ) is Normal with covariance matrix

rh(b)0
rh(b) where plim bN = b, h(�) is continuously di¤erentiable at b with gradient rh(b), and bN

has asymptotic covariance matrix 
.5

We can use these results to derive the asymptotic distribution of �̂ in two ways. A conceptually straight-

forward but somewhat inelegant approach is to use the delta method: �̂ is a function of sample moments,

and is therefore asymptotically Normally distributed. It remains only to �nd the covariance matrix of the

asymptotic distribution from the gradient of this function. (Note that consistency of �̂ comes immediately

from the continuous mapping theorem). An easier and more instructive derivation uses the Slutsky and

central limit theorems. Note �rst that we can write

yi = X
0
i� + [yi �X0i�] � X0i� + ei, (3.1.6)

where the residual ei is de�ned as the di¤erence between the dependent variable and the population regression

function, as before. This is as good a place as any to point out that these residuals are uncorrelated with the

regressors by de�nition of �. In other words, E[Xiei] = 0 is a consequence of � = E[XiX0i]
�1E[Xiyi] and

ei = yi�X0i�, and not an assumption about an underlying economic relation. We return to this important

point in the discussion of causal regression models in Section 3.2.6

Substituting the identity 3.1.6 for yi in the formula for �̂, we have

�̂ = � +
hX

XiX
0
i

i�1X
Xiei.

The asymptotic distribution of �̂ is the asymptotic distribution of
p
N(�̂��) = N

�P
XiX

0
i

��1 1p
N

P
Xiei.

By the Slutsky theorem, this has the same asymptotic distribution as E[XiX0i]
�1 1p

N

P
Xiei. Since E[Xiei] =

0, 1p
N

P
Xiei is a root-N -normalized and centered sample moment. By the central limit theorem, this is

asymptotically Normally distributed with mean zero and covariance matrix E[XiX0ie
2
i ], since this fourth mo-

ment is the covariance matrix of Xiei. Therefore, �̂ has an asymptotic Normal distribution, with probability

limit �, and covariance matrix

E[XiX
0
i]
�1E[XiX

0
ie
2
i ]E[XiX

0
i]
�1: (3.1.7)

The standard errors used to construct t-statistics are the square roots of the diagonal elements of this

5For a derivation of the the delta method formula using the Slutsky and continuous mapping theorems, see, e.g., Knight,

2000, pp. 120-121.
6Residuals de�ned in this way are not necessarily mean-independent of Xi; for mean-independence, we need a linear CEF.
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matrix. In practice these standard errors are estimated by substituting sums for expectations, and using the

estimated residuals, êi =yi�X0i�̂ to form the empirical fourth moment,
P
[XiXiê2i ]=N .

Asymptotic standard errors computed in this way are known as heteroskedasticity-consistent standard

errors, White (1980a) standard errors, or Eicker-White standard errors in recognition of Eicker�s (1967)

derivation. They are also known as �robust� standard errors (e.g., in Stata). These standard errors are

said to be robust because, in large enough samples, they provide accurate hypothesis tests and con�dence

intervals given minimal assumptions about the data and model. In particular, our derivation of the limiting

distribution makes no assumptions other than those needed to ensure that basic statistical results like the

central limit theorem go through. These are not, however, the standard errors that you get by default from

packaged software. Default standard errors are derived under a homoskedasticity assumption, speci�cally,

that E[e2i jXi] = �2, a constant. Given this assumption, we have

E[XiX
0
ie
2
i ] = E(XiX

0
iE[e

2
i jXi]) = �2E[XiX

0
i],

by iterating expectations. The asymptotic covariance matrix of �̂ then simpli�es to

E[XiX
0
i]
�1E[XiX

0
ie
2
i ]E[XiX

0
i]
�1 = E[XiX

0
i]
�1�2E[XiX

0
i]E[XiXi]

�1

= E[XiX
0
i]
�1�2. (3.1.8)

The diagonal elements of (3.1.8) are what SAS or Stata report unless you request otherwise.

Our view of regression as an approximation to the CEF makes heteroskedasticity seem natural. If the

CEF is nonlinear and you use a linear model to approximate it, then the quality of �t between the regression

line and the CEF will vary with Xi. Hence, the residuals will be larger, on average, at values of Xi where the

�t is poorer. Even if you are prepared to assumed that the conditional variance of yi given Xi is constant,

the fact that the CEF is nonlinear means that E[(yi�X0i�)2jXi] will vary with Xi. To see this, note that,

as a rule,

E[(yi �X0i�)2jXi] = (3.1.9)

Ef[(yi � E[yijXi]) + (E[yijXi]�X0i�)]2jXig

= V [yijXi] + (E[yijXi]�X0i�)2:

Therefore, even if V [yijXi] is constant, the residual variance increases with the square of the gap between

the regression line and the CEF, a fact noted in White (1980b).7

In the same spirit, it�s also worth noting that while a linear CEF makes homoskedasticity possible, this is

7The cross-product term resulting from an expansion of the quadratic in the middle of 3.1.9 is zero because yi � E[yijXi]

is mean-independent of Xi.
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not a su¢ cient condition for homoskedasticity. Our favorite example in this context is the linear probability

model (LPM). A linear probability model is any regression where the dependent variable is zero-one, i.e.,

a dummy variable such as an indicator for labor force participation. Suppose the regression model is

saturated, so the CEF is linear. Because the CEF is linear, the residual variance is also the conditional

variance, V [yijXi]: But the dependent variable is a Bernoulli trial and the variance of a Bernoulli trial is

P [yijXi](1 � P [yijXi]). We conclude that LPM residuals are necessarily heteroskedastic unless the only

regressor is a constant.

These points of principle notwithstanding, as an empirical matter, heteroskedasticity may matter little.

In the micro-data schooling regression depicted in Figure 3.1.3, the robust standard error is .0003447, while

the old-fashioned standard error is .0003043, only slightly smaller. The standard errors from the grouped-

data regression, which are necessarily heteroskedastic if group sizes di¤er, change somewhat more; compare

the .004 robust standard to the .0029 conventional standard error. Based on our experience, these di¤erences

are typical. If heteroskedasticity matters too much, say, more than a 30% increase or any marked decrease

in standard errors, you should worry about possible programming errors or other problems (for example,

robust standard errors below conventional may be a sign of �nite-sample bias in the robust calculation; see

Chapter 8, below.)

3.1.4 Saturated Models, Main E¤ects, and Other Regression Talk

We often discuss regression models using terms like saturated and main e¤ects. These terms originate in

an experimentalist tradition that uses regression to model discrete treatment-type variables. This language

is now used more widely in many �elds, however, including applied econometrics. For readers unfamiliar

with these terms, this section provides a brief review.

Saturated regression models are regression models with discrete explanatory variables, where the model

includes a separate parameter for all possible values taken on by the explanatory variables. For example,

when working with a single explanatory variable indicating whether a worker is a college graduate, the model

is saturated by including a single dummy for college graduates and a constant. We can also saturate when

the regressor takes on many values. Suppose, for example, that si = 0; 1; 2; :::; � . A saturated regression

model for si is

yi = �0 + �1d1i + �2d2i + :::+ ��d�i + "i;

where dji = 1[si = j] is a dummy variable indicating schooling level-j, and �j is said to be the jth-level

schooling e¤ect. Note that

�j = E[yijsi = j]� E[yijsi = 0];

while �0 = E[yijsi = 0]: In practice, you can pick any value of si for the reference group; a regression model

is saturated as long as it has one parameter for every possible j in E[yijsi = j]: Saturated models �t the
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CEF perfectly because the CEF is linear in the dummy regressors used to saturate. This is an important

special case of the regression-CEF theorem.

If there are two explanatory variables, say one dummy indicating college graduates and one dummy

indicating sex, the model is saturated by including these two dummies, their product, and a constant. The

coe¢ cients on the dummies are known as main e¤ects, while the product is called an interaction term. This

is not the only saturated parameterization; any set of indicators (dummies) that can be used to identify each

value taken on by the covariates produces a saturated model. For example, an alternative saturated model

includes dummies for male college graduates, male dropouts, female college graduates, and female dropouts,

but no intercept.

Here�s some notation to make this more concrete. Let x1i indicate college graduates and x2i indicate

women. The CEF given x1i and x2i takes on four values:

E [yijx1i = 0; x2i = 0] ;

E [yijx1i = 1; x2i = 0] ;

E [yijx1i = 0; x2i = 1] ;

E [yijx1i = 1; x2i = 1] :

We can label these using the following scheme:

E [yijx1i = 0; x2i = 0] = �

E [yijx1i = 1; x2i = 0] = �+ �

E [yijx1i = 0; x2i = 1] = �+ 

E [yijx1i = 1; x2i = 1] = �+ � +  + �:

Since there are four Greek letters and the CEF takes on four values, this parameterization does not restrict

the CEF. It can be written in terms of Greek letters as

E[yijx1i; x2i] = �+ �x1i + x2i + �(x1ix2i);

a parameterization with two main e¤ects and one interaction term.8 The saturated regression equation

becomes

yi = �+ �x1i + x2i + �(x1ix2i) + "i:

Finally, we can combine the multi-valued schooling variable with sex to produce a saturated model that

8With a third dummy variable in the model, say x3i, a saturated model includes 3 main e¤ects, 3 second-order interaction

terms fx1ix2i, x2ix3i; x1ix2ig and one third-order term, x1ix2ix3i.
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has � main e¤ects for schooling, one main e¤ect for sex, and � sex-schooling interactions:

yi = �0 +
�X
j=1

�jdji + x2i +
�X
j=1

�j(djix2i) + "i: (3.1.10)

The interaction terms, �j , tell us how each of the schooling e¤ects di¤er by sex. The CEF in this case takes

on 2(� + 1) values while the regression has this many parameters.

Note that there is a natural hierarchy of modeling strategies with saturated models at the top. It�s

natural to start with a saturated model because this �ts the CEF. On the other hand, saturated models

generate a lot of interaction terms, many of which may be uninteresting or imprecise. You might therefore

sensibly choose to omit some or all of these. Equation (3.1.10) without interaction terms approximates the

CEF with a purely additive model for schooling and sex. This is a good approximation if the returns to

college are similar for men and women. And, in any case, schooling coe¢ cients in the additive speci�cation

give a (weighted) average return across both sexes, as discussed in Section 3.3.1, below. On the other hand,

it would be strange to estimate a model which included interaction terms but omitted the corresponding

main e¤ects. In the case of schooling, this would be something like

yi = �0 + x2i +

�X
j=1

�j(djix2i) + "i: (3.1.11)

This model allows schooling to shift wages only for women, something very far from the truth. Consequently,

the results of estimating (3.1.11) are likely to be hard to interpret.

Finally, it�s important to recognize that a saturated model �ts the CEF perfectly regardless of the

distribution of yi. For example, this is true for linear probability models and other limited dependent

variable models (e.g., non-negative yi), a point we return to at the end of this chapter.

3.2 Regression and Causality

Section 3.1.2 shows how regression gives the best (MMSE) linear approximation to the CEF. This under-

standing, however, does not help us with the deeper question of when regression has a causal interpretation.

When can we think of a regression coe¢ cient as approximating the causal e¤ect that might be revealed in

an experiment?

3.2.1 The Conditional Independence Assumption

A regression is causal when the CEF it approximates is causal. This doesn�t answer the question, of course.

It just passes the buck up one level, since, as we�ve seen, a regression inherits it�s legitimacy from a CEF.

Causality means di¤erent things to di¤erent people, but researchers working in many disciplines have found

it useful to think of causal relationships in terms of the potential outcomes notation used in Chapter 2 to
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describe what would happen to a given individual in a hypothetical comparison of alternative hospitalization

scenarios. Di¤erences in these potential outcomes were said to be the causal e¤ect of hospitalization. The

CEF is causal when it describes di¤erences in average potential outcomes for a �xed reference population.

It�s easiest to expand on the somewhat murky notion of a causal CEF in the context of a particular

question, so let�s stick with the schooling example. The causal connection between schooling and earnings

can be de�ned as the functional relationship that describes what a given individual would earn if he or she

obtained di¤erent levels of education. In particular, we might think of schooling decisions as being made

in a series of episodes where the decision-maker might realistically go one way or another, even if certain

choices are more likely than others. For example, in the middle of junior year, restless and unhappy, Angrist

glumly considered his options: dropping out of high school and hopefully getting a job, staying in school but

taking easy classes that lead to a quick and dirty high school diploma, or plowing on in an academic track

that leads to college. Although the consequences of such choices are usually unknown in advance, the idea of

alternative paths leading to alternative outcomes for a given individual seems uncontroversial. Philosophers

have argued over whether this personal notion of potential outcomes is precise enough to be scienti�cally

useful, but individual decision-makers seem to have no trouble thinking about their lives and choices in this

manner (as in Robert Frost�s celebrated The Road Not Taken: the traveller-narrator sees himself looking

back on a moment of choice. He believes that the decision to follow the road less traveled "has made all the

di¤erence," though he also recognizes that counterfactual outcomes are unknowable).

In empirical work, the causal relationship between schooling and earnings tells us what people would

earn� on average� if we could either change their schooling in a perfectly-controlled environment, or change

their schooling randomly so that those with di¤erent levels of schooling would be otherwise comparable. As

we discussed in Chapter 2, experiments ensure that the causal variable of interest is independent of potential

outcomes so that the groups being compared are truly comparable. Here, we would like to generalize this

notion to causal variables that take on more than two values, and to more complicated situations where we

must hold a variety of "control variables" �xed for causal inferences to be valid. This leads to the conditional

independence assumption (CIA), a core assumption that provides the (sometimes implicit) justi�cation for

the causal interpretation of regression. This assumption is sometimes called selection-on-observables because

the covariates to be held �xed are assumed to be known and observed (e.g., in Goldberger, 1972; Barnow,

Cain, and Goldberger, 1981). The big question, therefore, is what these control variables are, or should be.

We�ll say more about that shortly. For now, we just do the econometric thing and call the covariates "Xi".

As far as the schooling problem goes, it seems natural to imagine that Xi is a vector that includes measures

of ability and family background.

For starters, think of schooling as a binary decision, like whether Angrist goes to college. Denote this

by a dummy variable, ci. The causal relationship between college attendance and a future outcome like

earnings can be described using the same potential-outcomes notation we used to describe experiments in
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Chapter 2. To address this question, we imagine two potential earnings variables:

potential outcome =

8><>: y1i if ci = 1

y0i if ci = 0
:

In this case, y0i is i�s earnings without college, while y1i is i�s earnings if he goes. We would like to know

the di¤erence between y1i and y0i, which is the causal e¤ect of college attendance on individual i. This

is what we would measure if we could go back in time and nudge i onto the road not taken. The observed

outcome, yi, can be written in terms of potential outcomes as

yi = y0i + (y1i � y0i)ci:

We get to see one of y1i or y0i, but never both. We therefore hope to measure the average of y1i�y0i, or

the average for some group, such as those who went to college. This is E[y1i�y0ijci = 1]:

In general, comparisons of those who do and don�t go to college are likely to be a poor measure of the

causal e¤ect of college attendance. Following the logic in Chapter 2, we have

E [yijci = 1]� E[yijci = 0]| {z }
Observed di¤erence in earnings

= E[y1i � y0ijci = 1]| {z }
average treatment e¤ect on the treated

(3.2.1)

+E [y0ijci = 1]� E [y0ijci = 0]| {z }
selection bias

:

It seems likely that those who go to college would have earned more anyway. If so, selection bias is positive,

and the naive comparison, E [yijci = 1]� E[yijci = 0], exaggerates the bene�ts of college attendance.

The CIA asserts that conditional on observed characteristics, Xi, selection bias disappears. In this

example, the CIA says,

fy0i,y1ig q cijXi: (3.2.2)

Given the CIA, conditional-on-Xi comparisons of average earnings across schooling levels have a causal

interpretation. In other words,

E [yijXi;ci = 1]� E [yijXi;ci = 0] = E[y1i � y0ijXi]:

Now, we�d like to expand the conditional independence assumption to causal relations that involve vari-

ables that can take on more than two values, like years of schooling, si: The causal relationship between

schooling and earnings is likely to be di¤erent for each person. We therefore use the individual-speci�c

notation,

ysi � fi(s)
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to denote the potential earnings that person i would receive after obtaining s years of education. If s takes

on only two values, 12 and 16, then we are back to the college/no college example:

y0i = fi(12);y1i = fi(16):

More generally, the function fi(s) tells us what i would earn for any value of schooling, s. In other words,

fi(s) answers causal �what if� questions. In the context of theoretical models of the relationship between

human capital and earnings, the form of fi(s) may be determined by aspects of individual behavior and/or

market forces.

The CIA in this more general setup becomes

Ysi q sijXi (CIA)

In many randomized experiments, the CIA crops up because si is randomly assigned conditional on Xi (In

the Tennessee STAR experiment, for example, small classes were randomly assigned within schools). In an

observational study, the CIA means that si can be said to be "as good as randomly assigned," conditional

on Xi.

Conditional on Xi, the average causal e¤ect of a one year increase in schooling is E[fi(s)� fi(s� 1)jXi],

while the average causal e¤ect of a 4-year increase in schooling is E[fi(s) � E [fi(s� 4)] jXi]. The data

reveal only yi = fi(si), however, that is fi(s) for s =si. But given the CIA, conditional-on-Xi comparisons

of average earnings across schooling levels have a causal interpretation. In other words,

E [yijXi; si = s]� E [yijXi; si = s� 1]

= E [fi(s)� fi(s� 1)jXi]

for any value of s. For example, we can compare the earnings of those with 12 and 11 years of schooling to

learn about the average causal e¤ect of high school graduation:

E [yijXi; si = 12]� E [yijXi; si = 11] = E [fi(12)jXi; si = 12]� E [fi(11)jXi; si = 11] :

This comparison has a causal interpretation because, given the CIA,

E [fi(12)jXi; si = 12]� E [fi(11)jXi; si = 11] = E [fi(12)� fi(11)jXi; si = 12] :

Here, the selection bias term is the average di¤erence in the potential dropout-earnings of high school

graduates and dropouts. Given the CIA, however, high school graduation is independent of potential

earnings conditional on Xi, so the selection-bias vanishes. Note also that in this case, the causal e¤ect of
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graduating high school on high school graduates is the population average high school graduation e¤ect:

E [fi(12)� fi(11)jXi; si = 12] = E [fi(12)� fi(11)jXi] :

This is important . . . but less important than the elimination of selection bias in (3.2.1).

So far, we have constructed separate causal e¤ects for each value taken on by the conditioning variable,

Xi. This leads to as many causal e¤ects as there are values of Xi, an embarrassment of riches. Empiricists

almost always �nd it useful to boil a set of estimates down to a single summary measure, like the population

average causal e¤ect. By the law of iterated expectations, the population average causal e¤ect of high school

graduation is

E fE [yijXi; si = 12]� E [yijXi; si = 11]g (3.2.3)

= E fE [fi(12)� fi(11)jXi]g

= E [fi(12)� fi(11)] (3.2.4)

In the same spirit, we might be interested in the average causal e¤ect of high school graduation on high

school graduates:

EfE[yijXi; si = 12]� E[yijXi; si = 11]jsi = 12g (3.2.5)

= EfE[fi(12)� fi(11)jXi]jsi = 12g

= E[fi(12)� fi(11)jsi = 12]: (3.2.6)

This parameter tells us how much high school graduates gained by virtue of having graduated. Likewise, for

the e¤ects of college graduation there is a distinction between E[fi(16)� fi(12)jsi = 16]; the average causal

e¤ect on college graduates and E[fi(16)� fi(12)], the population average e¤ect.

The population average e¤ect, (3.2.3), can be computed by averaging all of the X-speci�c e¤ects using

the marginal distribution of Xi; while the average e¤ect on high school or college graduates averages the

X-speci�c e¤ects using the distribution of Xi in these groups. In both cases, the empirical counterpart is a

matching estimator: we make comparisons across schooling groups graduates for individuals with the same

covariate values, compute the di¤erence in their earnings, and then average these di¤erences in some way.

In practice, there are many details to worry about when implementing a matching strategy. We �ll in

some of the technical details on the mechanics of matching in Section 3.3.1, below. Here we note that a

global drawback of the matching approach is that it is not "automatic," rather it requires two steps, matching

and averaging. Estimating the standard errors of the resulting estimates may not be straightforward, either.
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A third consideration is that the two-way contrast at the heart of this subsection (high school or college

completers versus dropouts) does not do full justice to the problem at hand. Since si takes on many values,

there are separate average causal e¤ects for each possible increment in si, which also must be summarized

in some way.9 These considerations lead us back to regression.

Regression provides an easy-to-use empirical strategy that automatically turns the CIA into causal e¤ects.

Two routes can be traced from the CIA to regression. One assumes that fi(s) is both linear in s and the same

for everyone except for an additive error term, in which case linear regression is a natural tool to estimate

the features of fi(s). A more general but somewhat longer route recognizes that fi(s) almost certainly

di¤ers for di¤erent people, and, moreover, need not be linear in s. Even so, allowing for random variation in

fi(s) across people, and for non-linearity for a given person, regression can be thought of as strategy for the

estimation of a weighted average of the individual-speci�c di¤erence, fi(s) � fi(s � 1). In fact, regression

can be seen as a particular sort of matching estimator, capturing an average causal e¤ect much like 3.2.3 or

3.2.5.

At this point, we want to focus on the conditions required for regression to have a causal interpretation

and not on the details of the regression-matching analog. We therefore start with the �rst route, a linear

constant-e¤ects causal model. Suppose that

fi(s) = �+ �s+ �i. (3.2.7)

In addition to being linear, this equation says that the functional relationship of interest is the same for

everyone. Again, s is written without an i subscript to index individuals, because equation (3.2.7) tells us

what person i would earn for any value of s and not just the realized value, si. In this case, however, the only

individual-speci�c and random part of fi(s) is a mean-zero error component, �i, which captures unobserved

factors that determine potential earnings.

Substituting the observed value si for s in equation (3.2.7), we have

yi = �+ �si + �i. (3.2.8)

Equation (3.2.8) looks like a bivariate regression model, except that equation (3.2.7) explicitly associates the

coe¢ cients in (3.2.8) with a causal relationship. Importantly, because equation (3.2.7) is a causal model, si

may be correlated with potential outcomes, fi(s), or, in this case, the residual term in (3.2.8), �i.

9For example, we might construct the average e¤ect over s using the distribution of si: In other words, estimate E[fi(s)�

fi(s� 1)] for each s by matching, and then compute the average di¤erence

X
E[fi(s)� fi(s� 1)]P (s):

where P (s) is the probability mass function for si: This is a discrete approximation to the average derivative, E[f 0i(si)]:
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Suppose now that the CIA holds given a vector of observed covariates, Xi: In addition to the functional

form assumption for potential outcomes embodied in (3.2.8), we decompose the random part of potential

earnings, �i, into a linear function of observable characteristics, Xi, and an error term, vi:

�i = X
0
i + vi,

where  is a vector of population regression coe¢ cients that is assumed to satisfy E[�ijXi] =X0i. Because 

is de�ned by the regression of �i on Xi;the residual vi and Xi are uncorrelated by construction. Moreover,

by virtue of the CIA, we have

E[fi(s)jXi; si] = E[fi(s)jXi] = �+ �s+ E[�ijX] = �+ �s+X0i

Because mean-independence implies orthogonality, the residual in the linear causal model

yi = �+ �si +X
0
i + vi (3.2.9)

is uncorrelated with the regressors, si and Xi, and the regression coe¢ cient � is the causal e¤ect of interest.

It bears emphasizing once again that the key assumption here is that the observable characteristics, Xi, are

the only reason why �i and si (equivalently, fi(s) and si ) are correlated. This is the selection-on-observables

assumption for regression models discussed over a quarter century ago by Barnow, Cain, and Goldberger

(1981). It remains the basis of most empirical work in Economics.

3.2.2 The Omitted Variables Bias Formula

The omitted variables bias (OVB) formula describes the relationship between regression estimates in models

with di¤erent sets of control variables. This important formula is often motivated by the notion that a

longer regression, i.e., one with more controls such as equation (3.2.9), has a causal interpretation, while a

shorter regression does not. The coe¢ cients on the variables included in the shorter regression are therefore

said to be "biased". In fact, the OVB formula is a mechanical link between coe¢ cient vectors that applies to

short and long regressions whether or not the longer regression is causal. Nevertheless, we follow convention

and refer to the di¤erence between the included coe¢ cients in a long regression and a short regression as

being determined by the OVB formula.

To make this discussion concrete, suppose the set of relevant control variables in the schooling regression

can be boiled down to a combination of family background, intelligence and motivation. Let these speci�c

factors be denoted by a vector, Ai, which we�ll refer to by the shorthand term �ability.�The regression of
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wages on schooling, si, controlling for ability can written as

yi = �+ �si +A0i + "i, (3.2.10)

where �, �, and  are population regression coe¢ cients, and "i is a regression residual that is uncorrelated

with all regressors by de�nition. If the CIA applies given Ai, then � can be equated with the coe¢ cient in

the linear causal model, 3.2.7, while the residual "i is the random part of potential earnings that is left over

after controlling for Ai.

In practice, ability is hard to measure. For example, the American Current Population Survey (CPS), a

large data set widely used in applied microeconomics (and the source of U.S. government data on unemploy-

ment rates), tells us nothing about adult respondents�family background, intelligence, or motivation. What

are the consequences of leaving ability out of regression (3.2.10)? The resulting �short regression�coe¢ cient

is related to the �long regression�coe¢ cient in equation (3.2.10) as follows:

Cov(yi; si)
V (si)

= �+ 0�As; (3.2.11)

where �As is the vector of coe¢ cients from regressions of the elements of Ai on si. To paraphrase, the OVB

formula says

Short equals long plus the e¤ect of omitted times the regression of omitted on included.

This formula is easy to derive: plug the long regression into the short regression formula, Cov(yi;si)V (si)
: Not

surprisingly, the OVB formula is closely related to the regression anatomy formula, 3.1.3, from Section 3.1.2.

Both the OVB and regression anatomy formulas tell us that short and long regression coe¢ cients are the

same whenever the omitted and included variables are uncorrelated.10

We can use the OVB formula to get a sense of the likely consequences of omitting ability for schooling

coe¢ cients. Ability variables have positive e¤ects on wages, and these variables are also likely to be positively

correlated with schooling. The short regression coe¢ cient may therefore be �too big� relative to what we

want. On the other hand, as a matter of economic theory, the direction of the correlation between schooling

and ability is not entirely clear. Some omitted variables may be negatively correlated with schooling, in

which case the short regression coe¢ cient will be too small.11

10Here is the multivariate generalization of OVB: Let �s1 denote the coe¢ cient vector on a k1 � 1 vector of variables, X1i in

a (short) regression that has no other variables and let �l1 denote the coe¢ cient vector on these variables in a (long) regression

that includes a k2 � 1 vector of control variables, X2i, with coe¢ cient vector �l2. Then �s1 = �l1 + E[X1iX
0
1i]

�1E[X1iX0
2i]�

l
2.

11As highly educated people, we like to assume that ability and schooling are positively correlated. This is not a foregone

conclusion, however: Mick Jagger dropped out of the London School of Economics and Bill Gates dropped out of Harvard,

perhaps because the opportunity cost of schooling for these high-ability guys was high (of course, they may also be a couple of

very lucky college dropouts).
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Table 3.2.1 illustrates these points using data from the NLSY. The �rst three entries in the table show

that the schooling coe¢ cient decreases from .132 to .114 when family background variables� in this case,

parents�education� as well as a few basic demographic characteristics (age, race, census region of residence)

are included as controls. Further control for individual ability, as proxied by the Armed Forces Quali�cation

Test (AFQT) test score, reduces the schooling coe¢ cient to .087 (AFQT is used by the military to select

soldiers). The omitted variables bias formula tells us that these reductions are a result of the fact that the

additional controls are positively correlated with both wages and schooling.12

Table 3.2.1: Estimates of the returns to education for men in the NLSY
(1) (2) (3) (4) (5)

Controls: None Age Col. (2) and Col. (3) and Col. (4), with
dummies additional AFQT score occupation

controls* dummies
0.132 0.131 0.114 0.087 0.066
(0.007) (0.007) (0.007) (0.009) (0.010)

Notes: Data are from the National Longitudinal Survey of Youth (1979 cohort,

2002 survey). The table reports the coe¢ cient on years of schooling in a regres-

sion of log wages on years of schooling and the indicated controls. Standard

errors are shown in parentheses. The sample is restricted to men and weighted

by NLSY sampling weights. The sample size is 2434.

*Additional controls are mother�s and father�s years of schooling and dummy

variables for race and Census region.

Although simple, the OVB formula is one of the most important things to know about regression. The

importance of the OVB formula stems from the fact that if you claim an absence of omitted variables bias,

then typically you�re also saying that the regression you�ve got is the one you want. And the regression you

want usually has a causal interpretation. In other words, you�re prepared to lean on the CIA for a causal

interpretation of the long-regression estimates.

At this point, it�s worth considering when the CIA is most likely to give a plausible basis for empirical

work. The best-case scenario is random assignment of si , conditional on Xi, in some sort of (possibly

natural) experiment. An example is the study of a mandatory re-training program for unemployed workers

by Black, et al. (2003). The authors of this study were interested in whether the re-training program

succeeded in raising earnings later on. They exploit the fact that eligibility for the training program they

study was determined on the basis of personal characteristics and past unemployment and job histories.

Workers were divided up into groups on the basis of these characteristics. While some of these groups of

workers were ineligible for training, those in other groups were required to take training if they did not take
12A large empirical literature investigates the consequences of omitting ability variables from schooling equations. Key early

references include Griliches and Mason (1972), Taubman (1976), Griliches (1977), and Chamberlain (1978).
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a job. When some of the mandatory training groups contained more workers than training slots, training

opportunities were distributed by lottery. Hence, training requirements were randomly assigned conditional

on the covariates used to assign workers to groups. A regression on a dummy for training plus the personal

characteristics, past unemployment variables, and job history variables used to classify workers seems very

likely to provide reliable estimates of the causal e¤ect of training.13

In the schooling context, there is usually no lottery that directly determines whether someone will go

to college or �nish high school.14 Still, we might imagine subjecting individuals of similar ability and

from similar family backgrounds to an experiment that encourages school attendance. The Education

Maintenance Allowance, which pays British high school students in certain areas to attend school, is one

such policy experiment (Dearden, et al, 2004).

A second type of study that favors the CIA exploits detailed institutional knowledge regarding the

process that determines si . An example is the Angrist (1998) study of the e¤ect of voluntary military

service on the later earnings of soldiers. This research asks whether men who volunteered for service in

the US Armed Forces were economically better o¤ in the long run. Since voluntary military service is not

randomly assigned, we can never know for sure. Angrist therefore used matching and regression techniques

to control for observed di¤erences between veterans and nonveterans who applied to get into the all-volunteer

forces between 1979 and 1982. The motivation for a control strategy in this case is the fact that the military

screens soldier-applicants primarily on the basis of observable covariates like age, schooling, and test scores.

The CIA in Angrist (1998) amounts to the claim that after conditioning on all these observed characteris-

tics veterans and nonveterans are comparable. This assumption seems worth entertaining since, conditional

on Xi, variation in veteran status in the Angrist (1998) study comes solely from the fact that some quali�ed

applicants fail to enlist at the last minute. Of course, the considerations that lead a quali�ed applicant

to �drop out� of the enlistment process could be related to earnings potential, so the CIA is clearly not

guaranteed even in this case.

3.2.3 Bad Control

We�ve made the point that control for covariates can make the CIA more plausible. But more control is not

always better. Some variables are bad controls and should not be included in a regression model even when

their inclusion might be expected to change the short regression coe¢ cients. Bad controls are variables that

are themselves outcome variables in the notional experiment at hand. That is, bad controls might just as

well be dependent variables too. Good controls are variables that we can think of as having been �xed at

the time the regressor of interest was determined.

The essence of the bad control problem is a version of selection bias, albeit somewhat more subtle than

13This program appears to raise earnings, primarily because workers in the training group went back to work more quickly.
14Lotteries have been used to distribute private school tuition subsidies; see, e.g., Angrist, et al. (2002).
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the selection bias discussed in Chapter (2) and Section (3.2). To illustrate, suppose we are interested in the

e¤ects of a college degree on earnings and that people can work in one of two occupations, white collar and

blue collar. A college degree clearly opens the door to higher-paying white collar jobs. Should occupation

therefore be seen as an omitted variable in a regression of wages on schooling? After all, occupation is highly

correlated with both education and pay. Perhaps it�s best to look at the e¤ect of college on wages for those

within an occupation, say white collar only. The problem with this argument is that once we acknowledge

the fact that college a¤ects occupation, comparisons of wages by college degree status within an occupation

are no longer apples-to-apples, even if college degree completion is randomly assigned.

Here is a formal illustration of the bad control problem in the college/occupation example.15 Let wi be

a dummy variable that denotes white collar workers and let yi denote earnings. The realization of these

variables is determined by college graduation status and potential outcomes that are indexed against ci.

We have

yi = ciy1i + (1� ci)y0i

wi = ciw1i + (1� ci)w0i

where ci = 1 for college graduates and is zero otherwise, {y1i,y0i} denotes potential earnings, and {w1i,w0i}

denotes potential white-collar status. We assume that ci is randomly assigned, so it is independent of

all potential outcomes. We have no trouble estimating the causal e¤ect of ci on either yi or wi since

independence gives us

E [yijci = 1]� E [yijci = 0] = E [y1i � y0i] ;

E [wijci = 1]� E [wijci = 0] = E [w1i �w0i] :

In practice, we might estimate these average treatment e¤ects by regressing yi and wi and on ci:

Bad control means that a comparison of earnings conditional on wi does not have a causal interpretation.

Consider the di¤erence in mean earnings between college graduates and others conditional on working at a

white collar job. We can compute this in a regression model that includes wi or by regressing yi on ci in

the sample where wi = 1: The estimand in the latter case is the di¤erence in means with ci switched o¤ and

on, conditional on wi = 1:

E [yijwi = 1;ci = 1]� E [yijwi = 1;ci = 0] = E [y1ijw1i = 1;ci = 1]� E [y0ijw0i = 1;ci = 0] (3.2.12)

15The same problem arises in "conditional-on-positive" comparisons, discussed in detail in section (3.4.2), below.
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By the joint independence of fy1i;w1i;y0i;w0ig and ci, we have

E [y1ijw1i = 1;ci = 1]� E [y0ijw0i = 1;ci = 0] = E [y1ijw1i = 1]� E [y0ijw0i = 1] :

This expression illustrates the apples-to-oranges nature of the bad-control problem:

E [y1ijw1i = 1]� E [y0ijw0i = 1]

= E [y1i � y0ijw1i = 1]| {z }
causal e¤ect on college grads

+fE [y0ijw1i = 1]� E [y0ijw0i = 1]g :| {z }
selection bias

In other words, the di¤erence in wages between those with and without a college degree conditional on

working in a white collar job equals the causal e¤ect of college on those with w1i = 1 (people who work at

a white collar job when they have a college degree) and a selection-bias term which re�ects the fact that

college changes the composition of the pool of white collar workers.

The selection-bias in this context can be positive or negative, depending on the relation between occupa-

tional choice, college attendance, and potential earnings. The main point is that even if y1i =y0i, so that

there is no causal e¤ect of college on wages, the conditional comparison in (3.2.12) will not tell us this (the

regression of yi on wi and ci has exactly the same problem). It is also incorrect to say that the conditional

comparison captures the part of the e¤ect of college that is "not explained by occupation." In fact, the

conditional comparison does not tell us much that is useful without a more elaborate model of the links

between college, occupation, and earnings.16

As an empirical illustration, we see that the addition of two-digit occupation dummies indeed reduces the

schooling coe¢ cient in the NLSY models reported in Table 3.2.1, in this case from .087 to .066. However,

it�s hard to say what we should make of this decline. The change in schooling coe¢ cients when we add

occupation dummies may simply be an artifact of selection bias. So we would do better to control only for

variables that are not themselves caused by education.

A second version of the bad control scenario involves proxy control, that is, the inclusion of variables that

might partially control for omitted factors, but are themselves a¤ected by the variable of interest. A simple

version of the proxy-control scenario goes like this: Suppose you are interested in a long regression, similar

to equation (3.2.10),

yi = �+ �si + ai + "i; (3.2.13)

where for the purposes of this discussion we�ve replaced the vector of controls Ai, with a scalar ability

measure ai. Think of this as an IQ score that measures innate ability in eighth grade, before any relevant

16 In this example, selection bias is probably negative, that is E [y0ijw1i = 1] < E [y0ijw0i = 1] : It seems reasonable to think

that any college graduate can get a white collar job, so E [y0ijw1i = 1] is not too far from E[y0i]: But someone who gets a

white collar without bene�t of a college degree (i.e., w0i = 1) is probably special, i.e., has a better than average y0i.
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schooling choices are made (assuming everyone completes eighth grade). The error term in this equation

satis�es E[si"i] = E[ai"i] = 0 by de�nition. Since ai is measured before si is determined, it is a good

control.

Equation (3.2.13) is the regression of interest, but unfortunately, data on ai are unavailable. However,

you have a second ability measure collected later, after schooling is completed (say, the score on a test used

to screen job applicants). Call this variable "late ability," ali. In general, schooling increases late ability

relative to innate ability. To be speci�c, suppose

ali = �0 + �1si + �2ai: (3.2.14)

By this, we mean to say that both schooling and innate ability increase late or measured ability. There is

almost certainly some randomness in measured ability as well, but we can make our point more simply via

the deterministic link, (3.2.14).

You�re worried about OVB in the regression of yi on si alone, so you propose to regress yi on si and

late ability, ali since the desired control, ai, is unavailable. Using (3.2.14) to substitute for ai in (3.2.13),

the regression on si and ali is

yi = (�� 
�0
�2
) + (��  �1

�2
)si +



�2
ali + "i: (3.2.15)

In this scenario, , �1, and �2 are all positive, so � �  �1�2 is too small unless �1 turns out to be zero. In

other words, use of a proxy control that is increased by the variable of interest generates a coe¢ cient below

the desired e¤ect. Importantly, �1 can be investigated to some extent: if the regression of ali on si is zero,

you might feel better about assuming that �1 is zero in (3.2.14).

There is an interesting ambiguity in the proxy-control story that is not present in the �rst bad-control

story. Control for outcome variables is simply misguided; you do not want to control for occupation in

a schooling regression if the regression is to have a causal interpretation. In the proxy-control scenario,

however, your intentions are good. And while proxy control does not generate the regression coe¢ cient of

interest, it may be an improvement on no control at all. Recall that the motivation for proxy control is

equation (3.2.13). In terms of the parameters in this model, the OVB formula tells us that a regression on

si with no controls generates a coe¢ cient of � + �as, where �as is slope coe¢ cient from a regression of ai

on si. The schooling coe¢ cient in (3.2.15) might be closer to � than the coe¢ cient you estimate with no

control at all. Moreover, assuming �as is positive, you can safely say that the causal e¤ect of interest lies

between these two.

One moral of both the bad-control and the proxy-control stories is that when thinking about controls,

timing matters. Variables measured before the variable of interest was determined are generally good controls.

In particular, because these variables were determined before the variable of interest, they cannot themselves
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be outcomes in the causal nexus. In many cases, however, the timing is uncertain or unknown. In such

cases, clear reasoning about causal channels requires explicit assumptions about what happened �rst, or the

assertion that none of the control variables are themselves caused by the regressor of interest.17

3.3 Heterogeneity and Nonlinearity

As we saw in the previous section, a linear causal model in combination with the CIA leads to a linear

CEF with a causal interpretation. Assuming the CEF is linear, the population regression is it. In practice,

however, the assumption of a linear CEF is not really necessary for a causal interpretation of regression. For

one thing, as discussed in Section 3.1.2, we can think of the regression of yi on Xi and si as providing the

best linear approximation to the underlying CEF, regardless of its shape. Therefore, if the CEF is causal,

the fact that regression approximates it gives regression coe¢ cients a causal �avor. This claim is a little

vague, however, and the nature of the link between regression and the CEF is worth exploring further. This

exploration leads us to an understanding of regression as a computationally attractive matching estimator.

3.3.1 Regression Meets Matching

The past decade or two has seen increasing interest in matching as an empirical tool. Matching as a strategy

to control for covariates is typically motivated by the CIA, as for causal regression in the previous section.

For example, Angrist (1998) used matching to estimate the e¤ects of volunteering for the military service

on the later earnings of soldiers. These matching estimates have a causal interpretation assuming that,

conditional on the individual characteristics the military uses to select soldiers (age, schooling, test scores),

veteran status is independent of potential earnings.

An attractive feature of matching strategies is that they are typically accompanied by an explicit state-

ment of the conditional independence assumption required to give matching estimates a causal interpretation.

At the same time, we have just seen that the causal interpretation of a regression coe¢ cient is based on

exactly the same assumption. In other words, matching and regression are both control strategies. Since

the core assumption underlying causal inference is the same for the two strategies, it�s worth asking whether

or to what extent matching really di¤ers from regression. Our view is that regression can be motivated as

a computational device for a particular sort of weighted matching estimator, and therefore the di¤erences

between regression and matching are unlikely to be of major empirical importance.

To �esh out this idea, it helps to look more deeply into the mathematical structure of the matching and

regressions estimands, i.e., the population quantities that these methods attempt to estimate. For regression,

of course, the estimand is a vector of population regression coe¢ cients. The matching estimand is typically

17Griliches and Mason (1972) is a seminal exploration of the use of early and late ability controls in schooling equations.

See also Chamberlain (1977, 1978) for closely related studies. Rosenbaum (1984) o¤ers an alternative discussion of the proxy

control idea using very di¤erent notation, outside of a regression framework.
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a particular weighted average of contrasts or comparisons across cells de�ned by covariates. This is easiest

to see in the case of discrete covariates, as in the military service example, and for a discrete regressor such

as veteran status, which we denote here by the dummy, di. Since treatment takes on only two values, we can

use the notation y1i=fi(1) and y0i=fi(0) to denote potential outcomes. A parameter of primary interest in

this context is the average e¤ect of treatment on the treated, E[y1i�y0ijdi = 1]. This tells us the di¤erence

between the average earnings of soldiers, E[y1ijdi = 1], an observable quantity, and the counterfactual

average earnings they would have obtained if they had not served, E[y0ijdi = 1]. Simply comparing the

observed earnings di¤erential by veteran status is a biased measure of the e¤ect of treatment on the treated

unless di is independent of y0i. Speci�cally,

E [yijdi = 1]� E [yijdi = 0] = E [y1i � y0ijdi = 1]

+ fE [y0ijdi = 1]� E [y0ijdi = 0]g :

In other words, the observed earnings di¤erence by veteran status equals the average e¤ect of treatment on

the treated plus selection bias. This parallels the discussion of selection bias in Chapter 2.

Given the CIA, selection bias disappears after conditioning on Xi, so the e¤ect of treatment on the

treated can be constructed by iterating expectations over Xi:

�TOT � E[y1i � y0ijdi = 1]

= EfE[y1ijXi;di = 1]� E[y0ijXi;di = 1]jdi = 1g:

Of course, E[y0ijXi;di = 1] is counterfactual. By virtue of the CIA, however,

E[y0ijXi;di = 0] = E[y0ijXi;di = 1]:

Therefore,

�TOT = E fE [y1ijXi;di = 1]� E [y0ijXi;di = 0] jdi = 1g (3.3.1)

= E[�X jdi = 1];

where

�X � E[yijXi;di = 1]� E[yijXi;di = 0];

is the random X-speci�c di¤erence in mean earnings by veteran status at each value of Xi.

The matching estimator in Angrist (1998) uses the fact that Xi is discrete to construct the sample analog
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of the right-hand-side of (3.3.1). In the discrete case, the matching estimand can be written

E[y1i � y0ijdi = 1] =
X
x

�xP (Xi = xjdi = 1); (3.3.2)

where P (Xi = xjdi = 1) is the probability mass function for Xi given di = 1.18 . In this case, Xi, takes on

values determined by all possible combinations of year of birth, test-score group, year of application to the

military, and educational attainment at the time of application. The test score in this case is from the AFQT,

used by the military to categorize the mental abilities of applicants (we included this as a control in the

schooling regression discussed in Section 3.2.2). The Angrist (1998) matching estimator simply replaces �X

by the sample veteran-nonveteran earnings di¤erence for each combination of covariates, and then combines

these in a weighted average using the empirical distribution of covariates among veterans.19

Note also that we can just as easily construct the unconditional average treatment e¤ect,

�ATE = EfE[y1ijXi;di = 1]� E[y0ijXi;di = 0]g (3.3.3)

=
X
x

�xP (Xi = x)

= E[y1i � y0i];

which is the expectation of �X using the marginal distribution of Xi instead of the distribution among the

treated. �TOT tells us how much the typical soldier gained or lost as a consequence of military service,

while �ATE tells us how much the typical applicant to the military gained or lost (since the Angrist, 1998,

population consists of applicants.)

The US military tends to be fairly picky about it�s soldiers, especially after downsizing at the end of

the Cold War. For the most part, the military now takes only high school graduates with test scores in

the upper half of the test score distribution. The resulting positive screening generates positive selection

bias in naive comparisons of veteran and non-veteran earnings. This can be seen in Table 3.3.1, which

reports di¤erences-in-means, matching, and regression estimates of the e¤ect voluntary military service on

the 1988-91 Social Security-taxable earnings of men who applied to join the military between 1979 and 1982.

The matching estimates were constructed from the sample analog of (3.3.2). Although white veterans earn

$1,233 more than nonveterans, this di¤erence becomes negative once di¤erences in covariates are matched

away. Similarly, while non-white veterans earn $2,449 more than nonveterans, controlling for covariates

reduces this to $840.

18This matching estimator is discussed by Rubin (1977) and used by Card and Sullivan (1988) to estimate the e¤ect of

subsidized training on employment.
19With continuous covariates, exact matching is impossible and some sort of approximation is required, a fact that leads to

bias. See Abadie and Imbens (2006), who derive the implications of approximate matching for the limiting distirbution of

matching estimators.
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Table 3.3.1: Uncontrolled, matching, and regression estimates of the e¤ects of voluntary military service on
earnings

Race Average Di¤erences Matching Regression Regression
earnings in means estimates estimates minus
in 1988- by veteran matching
1991 status
(1) (2) (3) (4) (5)

Whites 14537 1233.4 -197.2 -88.8 108.4
(60.3) (70.5) (62.5) (28.5)

Non- 11664 2449.1 839.7 1074.4 234.7
whites (47.4) (62.7) (50.7) (32.5)

Notes: Adapted from Angrist (1998, Tables II and V). Standard errors are

reported in parentheses. The table shows estimates of the e¤ect of voluntary

military service on the 1988-1991 Social Security- taxable earnings of men who

applied to enter the armed forces between 1979 and 1982. The matching and

regression estimates control for applicants�year of birth, education at the time

of application, and AFQT score. There are 128,968 whites and 175,262 non-

whites in the sample.

Table (3.3.1) also shows regression estimates of the e¤ect of voluntary military service, controlling for

the same set of covariates that were used to construct the matching estimates. These are estimates of �R in

the equation

yi =
X
x

dix�x + �Rdi + "i; (3.3.4)

where dix is a dummy that indicates Xi = x, �x is a regression-e¤ect for Xi = x, and �R is the regression

estimand. Note that this regression model allows a separate parameter for every value taken on by the

covariates. This model can therefore be said to be saturated-in-Xi, since it includes a parameter for every

value of Xi (it is not "fully saturated," however, because there is a single additive e¤ect for di with no di�

Xi interactions).

Despite the fact that the matching and regression estimates control for the same variables, the regression

estimates in Table 3.3.1 are somewhat larger than the matching estimates for both whites and nonwhites. In

fact, the di¤erences between the matching and regression results are statistically signi�cant. At the same

time, the two estimation strategies present a broadly similar picture of the e¤ects of military service. The

reason the regression and matching estimates are similar is that regression, too, can be seen as a sort of

matching estimator: the regression estimand di¤ers from the matching estimands only in the weights used

to sum the covariate-speci�c e¤ects, �X into a single e¤ect. In particular, matching uses the distribution of

covariates among the treated to weight covariate-speci�c estimates into an estimate of the e¤ect of treatment

on the treated, while regression produces a variance-weighted average of these e¤ects.
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To see this, start by using the regression anatomy formula to write the coe¢ cient on di in the regression

of yi on Xi and di as

�R =
Cov(yi, �di)
V (�di)

(3.3.5)

=
E[(di � E[dijXi])yi]
E[(di � E[dijXi])2]

=
Ef(di � E[dijXi])E[yijdi;Xi]g

E[(di � E[dijXi])2]
: (3.3.6)

The second equality in this set of expressions uses the fact that saturating the model in Xi means E[dijXi]

is linear. Hence, �di, which is de�ned as the residual from a regression of di on Xi, is the di¤erence between

di and E[dijXi]: The third equality uses the fact that the regression of yi on di and Xi is the same as the

regression of yi on E[yijdi;Xi].

To simplify further, we expand the CEF, E[yijdi;Xi]; to get

E[yijdi;Xi] = E[yijdi = 0;Xi] + �Xdi:

If covariates are unnecessary - in other words, the CIA holds unconditionally, as if in a randomized trial -

this CEF becomes

E[yijdi;Xi] = E[yijdi = 0] + E[y1i � y0i]di;

from which we conclude that the regression of yi on di estimates the population average treatment e¤ect

in this case (e.g., as in the experiment discussed in Section 2.3). But here we are interested in the more

general scenario where conditioning Xi is necessary to eliminate selection bias.

To evaluate the more general regression estimand, (3.3.5), we begin by substituting for E[yijdi;Xi] in

the numerator. This gives

Ef(di � E[dijXi])E[yijdi;Xi]g = Ef(di � E[dijXi])E[yijdi = 0;Xi]g+ Ef(di � E[dijXi])di�Xg:

The �rst term on the right-hand side is zero because E[yijdi = 0;Xi] is a function of Xi and is therefore

uncorrelated with (di � E[dijXi]): For the same reason, the second term simpli�es to

Ef(di � E[dijXi])di�Xg = Ef(di � E[dijXi])2�Xg:

At this point, we�ve shown

�R =
E[(di � E[dijXi])2�X ]
E[(di � E[dijXi])2]

=
EfE[(di � E[dijXi])2jXi]�Xg
EfE[(di � E[dijXi])2jXi]g

=
E[�2D(Xi)�X ]
E[�2D(Xi)]

; (3.3.7)
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where

�2D(Xi) = E[(di � E[dijXi])2jXi]

is the conditional variance of di given Xi. This establishes that the regression model, (3.3.4), produces a

treatment-variance weighted average of �X :

Because the regressor of interest, di is a dummy variable, one last step can be taken. In this case,

�2D(Xi) = P (di = 1jXi)(1� P (di = 1jXi)), so

�R =

X
x

�x [P (di = 1jXi = x)(1� P (di = 1jXi = x))]P (Xi = x)X
x

[P (di = 1jXi = x)(1� P (di = 1jXi = x))]P (Xi = x)

This shows that the regression estimand weights each covariate-speci�c treatment e¤ect by [P (Xi = xjdi =

1)(1� P (Xi = xjdi = 1))]P (Xi = x). In contrast, the matching estimand for the e¤ect of treatment on the

treated can be written

E[y1i � y0ijdi = 1] =
X
x

�xP (Xi = xjdi = 1) =

X
x

�xP (di = 1jXi = x)P (Xi = x)X
x

P (di = 1jXi = x)P (Xi = x)

because

P (Xi = xjdi = 1) =
P (di = 1jXi = x) � P (Xi = x)

P (di = 1)
:

So the weights used to construct E[y1i�y0ijdi = 1] are proportional to the probability of treatment at each

value of the covariates.

The point of this derivation is that the treatment-on-the-treated estimand puts the most weight on

covariate cells containing those who are most likely to be treated. In contrast, regression puts the most

weight on covariate cells where the conditional variance of treatment status is largest. As a rule, this

variance is maximized when P (di = 1jXi = x) = 1
2 , in other words, for cells where there are equal numbers

of treated and control observations. Of course, the di¤erence in weighting schemes is of little importance

if �x does not vary across cells (though weighting still a¤ects the statistical e¢ ciency of estimators). In

this example, however, men who were most likely to serve in the military appear to bene�t least from their

service. This is probably because those most likely to serve were most quali�ed, but therefore also had the

highest civilian earnings potential and so bene�ted least from military service. This fact leads matching

estimates of the e¤ect of military service to be smaller than regression estimates based on the same vector

of control variables.20

20 It�s no surprise that regression gives the most weight to cells where P (di = 1jXi = x) = 1=2 since regression is e¢ cient for

a homoskedastic constant-e¤ects linear model. We should expect an e¢ cient estimator to give the most weight to cells where

the common treatment e¤ect is estimated most precisely. With homoskedastic residuals, the most precise treatment e¤ects
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Importantly, neither the regression nor the covariate-matching estimands give any weight to covariate

cells that do not contain both treated and control observations. Consider a value of Xi, say x�, where

either no one is treated or everyone is treated. Then, �x� is unde�ned, while the regression weights,

[P (di = 1jXi = x�)(1� P (di = 1jXi = x�))] ; are zero: In the language of the econometric literature on

matching, both the regression and matching estimands impose common support, that is, they are limited to

covariate values where both treated and control observations are found.21

The step from estimand to estimator is a little more complicated. In practice, both regression and

matching estimators are implemented using modelling assumptions that implicitly involve a certain amount

of extrapolation across cells. For example, matching estimators often combine covariates cells with few

observations. This violates common support if the cells being combined do not each have both treated and

non-treated observations. Regression models that are not saturated in Xi may also violate common support,

since covariate cells without both treated and control observations can end up contributing to the estimates

by extrapolation. Here too, however, we see a symmetry between the matching and regression strategies:

they are in the same class, in principle, and require the same sort of compromises in practice.22

Even More on Regression and Matching: Ordered and Continuous TreatmentsF

Does the pseudo-matching interpretation of regression outlined above for a binary treatment apply to models

with ordered and continuous treatments? The long answer is fairly technical and may be more than you

want to know. The short answer is, to one degree or another, "yes."

As we�ve already discussed, one interpretation of regression is that the population OLS slope vector

provides the MMSE linear approximation to the CEF. This, of course, works for ordered and continuous

regressors as well as for binary. A related property is the fact that regression coe¢ cients have an �average

derivative�interpretation. In multivariate regression models, this interpretation is unfortunately complicated

by the fact that the OLS slope vector is a matrix-weighted average of the gradient of the CEF. Matrix-

weighted averages are di¢ cult to interpret except in special cases (see Chamberlain and Leamer, 1976). An

important special case when the average derivative property is relatively straightforward is in regression

models for an ordered or continuous treatment with a saturated model for covariates. To avoid lengthy

derivations, we simply explain the formulas. A derivation is sketched in the appendix to this chapter. For

additional details, see the appendix to Angrist and Krueger (1999).

come from cells where the probability of treatment equals 1=2.
21The support of a random variable is the set of realizations that occur with positive probability. See Heckman, Ichimura,

Smith, and Todd (1998) and Smith and Todd (2001) for a discussion of common support in matching.
22Matching problems involving �nely distributed X-variables are often solved by aggregating values to make coarser groupings

or by pairing observations that have similar, though not necessarily identical values. See Cochran (1965), Rubin (1973), or

Rosenbaum (1995, Chapter 3) for discussions of this approach. With continuously-distributed covariates, matching estimators

are biased because matches are imperfect. Abadie and Imbens (2008) have recently shown that a regression-based bias correction

can eliminate the (asymptotic) bias from imperfect matches.
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For the purposes of this discussion, the treatment intensity, si, is assumed to be a continuously distributed

random variable, not necessarily non-negative. Suppose that the CEF of interest can be written h(t) �

E[yijsi = t] with derivative h0 (t). Then

E[yi(si � E[si])]
E[si(si � E[si])]

=

R
h0 (t)�tdtR
�tdt

(3.3.8)

where

�t � fE[sijsi � t]� E[sijsi < t]gfP (si � t)[1� P (si � t)g; (3.3.9)

and the integrals in (3.3.8) run over the possible values of si. This formula weights each possible value of si

in proportion to the di¤erence in the conditional mean of si above and below that value. More weight is also

given to points close to the median of si since P (si � t) � [1� P (si � t)] is maximized at P (si � t) = 1=2.

With covariates, Xi, the weights in (3.3.8) become X-speci�c. A covariate-averaged version of the same

formula applies to the multivariate regression coe¢ cient of yi on si, after partialling out Xi. In particular,

E[yi(si � E[sijXi])]
E[si(si � E[sijX])]

=
E
�R
h0X(t)�tXdt

�
E
�R
�tXdt

� ; (3.3.10)

where h0X (t) �
@E[yijXi;si=t]

@t and �tX � fE[sijXi; si � t]� E[sijXi;si < t]gfP (si � tjXi)[1� P (si � tjXi)g.

It bears emphasizing that equation (3.3.10) re�ects two types of averaging: an integral that averages along

the length of a nonlinear CEF at �xed covariate values, and an expectation that averages across covariate

cells. An important point in this context is that population regression coe¢ cients contain no information

about the e¤ect of si on the CEF for values of Xi where P (si � tjXi) equals 0 or 1. This includes values

of Xi where si is �xed. In the same spirit, it�s worth noting that if si is a dummy variable, we can extract

equation (3.3.7) from the more general formula, (3.3.10).

Angrist and Krueger (1999) construct the average weighting function for a schooling regression with state

of birth and year of birth covariates. Although equations (3.3.8) and (3.3.10) may seem arcane or at least

non-obvious, in this example the average weights, E[�tX ]; turn out to be a reasonably smooth symmetric

function of t, centered at the mode of si.

The implications of (3.3.8) or (3.3.10) can be explored further given a model for the distribution of

regressors. Suppose, for example, that si is Normally distributed. Let zi =
si�E(si)

�s
, where �s is the

standard deviation of si, so that zi is standard Normal. Then

E[sijsi � t] = E(si) + �sE
�
zijzi �

t� E(si)
�s

�
= E(si) + �sE [zijzi � t�] :
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From truncated Normal formulas (see, e.g., Johnson and Kotz, 1970), we know that

E[zijzi > t�] =
�(t�)

[1� �(t�)]and E[zijzi < t�] =
��(t�)
� (t�)

:

where �(�) and �(�) are the standard Normal density and distribution function. Substituting in the formula

for �t, (3.3.9), we have

�t = �s

�
�(t�)

[1� �(t�)] �
��(t�)
� (t�)

�
[1� �(t�)]� (t�) = �s�(t

�):

We have therefore shown that
Cov(yi; si)
V (si)

= E[h0(si)]:

In other words, the regression of yi on si is the (unweighted!) population average derivative, E[h0(si)],

when si is Normally distributed. Of course, this result is a special case of a special case.23 Still, it seems

reasonable to imagine that Normality might not matter very much. And in our empirical experience, the

average derivatives (also called �marginal e¤ects�) constructed from parametric nonlinear models for limited

dependent variables (e.g., Probit or Tobit) are usually indistinguishable from the corresponding regression

coe¢ cients, regardless of the distribution of regressors. We expand on this point in Section 3.4.2, below.

3.3.2 Control for Covariates Using the Propensity Score

The most important result in regression theory is the omitted variables bias formula: coe¢ cients on included

variables are una¤ected by the omission of variables when the variables omitted are uncorrelated with the

variables included. The propensity score theorem, due to Rosenbaum and Rubin (1983), extends this idea

to estimation strategies that rely on matching instead of regression, where the causal variable of interest is

a treatment dummy.24

The propensity score theorem states that if potential outcomes are independent of treatment status

conditional on a multivariate covariate vector, Xi, then potential outcomes are independent of treatment

status conditional on a scalar function of covariates, the propensity score, de�ned as p(Xi) � E[dijXi].

Formally, we have

Theorem 3.3.1 The Propensity-Score Theorem.

Suppose the CIA holds for yji; j = 0; 1. Then yjiqdijp(Xi).

23More specialized results in this spirit appear in Ruud (1986), who considers distribution-free estimation of limited-dependent-

variable models with Normally distributed regressors.
24Propensity-score methods can be adapted to multi-valued treatments, though this has yet to catch on. See Imbens (2000)

for an e¤ort in this direction.
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Proof. The claim is true if P [di = 1jyji; p(Xi)] does not depend on yji.

P [di = 1jyji; p(Xi)] = E[dijyji; p(Xi)]

= EfE[dijyji; p(Xi);Xi]jyji; p(Xi)g

= EfE[dijyji;Xi]jyji; p(Xi)g

= EfE[dijXi]jyji; p(Xi)g;by the CIA.

But EfE[dijXi]jyji; p(Xi)g = Efp(Xi)jyji; p(Xi)g, which is clearly just p(Xi).

Like the OVB formula for regression, the propensity score theorem says you need only control for covari-

ates that a¤ect the probability of treatment. But it also says something more: the only covariate you really

need to control for is the probability of treatment itself. In practice, the propensity score theorem is usually

used for estimation in two steps: �rst, p(Xi) is estimated using some kind of parametric model, say, Logit

or Probit. Then estimates of the e¤ect of treatment are computed either by matching on the �tted values

from this �rst step, or by a weighting scheme described below (see, Imbens, 2004, for an overview).

In practice there are many ways to use the propensity score theorem for estimation. Direct propensity-

score matching works like covariate matching, except that we match on the score instead of the covariates

directly. By the propensity score theorem and the CIA,

E[y1i � y0ijdi = 1] = E fE[yijp(Xi);di = 1]� E[yijp(Xi);di = 0]jdi = 1g :

Estimates of the e¤ect of treatment on the treated can therefore be obtained by stratifying on an estimate of

p(Xi) and substituting conditional sample averages for expectations or by matching each treated observation

to controls with the same or similar values of the propensity score (both of these approaches were used by

Dehejia and Wahba, 1999). Alternately, a model-based or non-parametric estimate of E[yijp(Xi);di] can

be substituted for these conditional mean functions and the outer expectation replaced with a sum (as in

Heckman, Ichimura, and Todd, 1998).

The somewhat niftier weighting approach to propensity-score estimation skips the cumbersome matching

step by exploiting the fact that the CIA implies E
h
yidi
p(Xi)

i
= E[y1i] and E[

yi(1�di)
(1�p(Xi)) ] = E[y0i]. Therefore,

given a scheme for estimating p(Xi); we can construct estimates of the average treatment e¤ect from the

sample analog of

E[y1i � y0i] = E

�
yidi
p(Xi)

� yi(1� di)
1� p(Xi)

�
= E

�
(di � p(Xi))yi
p(Xi)(1� p(Xi))

�
: (3.3.11)

This last expression is an estimand of the form suggested by Newey (1990) and Robins, Mark, and Newey
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(1992). We can similarly calculate the e¤ect of treatment on the treated from the sample analog of:

E[y1i � y0ijdi = 1] = E

�
(di � p(Xi))yi
(1� p(Xi))P (di)

�
: (3.3.12)

The idea that you can correct for non-random sampling by weighting by the reciprocal of the probability of

selection dates back to Horvitz and Thompson (1952). Of course, to make this approach feasible, and for

the resulting estimates to be consistent, we need a consistent estimator for p(Xi)

The Horvitz-Thompson version of the propensity-score approach is appealing since the estimator is essen-

tially automated, with no cumbersome matching required. The Horvitz-Thompson approach also highlights

the close link between propensity-score matching and regression, much as discussed for covariate matching

in section 3.3.1. Consider again the regression estimand, �R, for the population regression of yi on di,

controlling for a saturated model for covariates. This estimand can be written

�R =
E[(di � p(Xi))yi]
E[p(Xi)(1� p(Xi))]

: (3.3.13)

The two Horvitz-Thompson matching estimands and the regression estimand are all members of the class of

weighted average estimands considered by Hirano, Imbens, and Ridder (2003):

E

�
g(Xi)

�
yidi
p(Xi)

� yi(1� di)
(1� p(Xi))

��
; (3.3.14)

where g(Xi) is a known weighting function (To go from estimand to estimator, replace p(Xi) with a consistent

estimator, and expectations with sums). For the average treatment e¤ect, set g(Xi) = 1; for the e¤ect on

the treated, set g(Xi) =
p(Xi)
P (di)

; and for regression set

g(Xi) =
p(Xi)(1� p(Xi))

E[p(Xi)(1� p(Xi))]
:

This similarity highlights once again the fact that regression and matching� including propensity score

matching� are not really di¤erent animals, at least not until we specify a model for the propensity score.

A big question here is how best to model and estimate p(Xi), or how much smoothing or strati�cation to

use when estimating E[yijp(Xi);di]; especially if the covariates are continuous The regression analog of this

question is how to parametrize the control variables (e.g., polynomials or main e¤ects and interaction terms

if the covariates are coded as discrete). The answer to this is inherently application-speci�c. A growing

empirical literature suggests that a Logit model for the propensity score with a few polynomial terms in

continuous covariates works well in practice, though this cannot be a theorem (see, e.g., Dehejia and Wahba,

1999).

A developing theoretical literature has produced some thought-provoking theorems on e¢ cient use of the



62 CHAPTER 3. MAKING REGRESSION MAKE SENSE

propensity score. First, from the point of view of asymptotic e¢ ciency, there is usually a cost to matching

on the propensity score instead of full covariate matching. We can get lower asymptotic standard errors by

matching on any covariate that explains outcomes, whether or not it turns up in the propensity score. This

we know from Hahn�s (1998) investigation of the maximal precision that it is possible to obtain for estimates

of treatment e¤ects under the CIA, with and without knowledge of the propensity score. For example, in

Angrist (1998), there is an e¢ ciency gain from matching on year of birth, even if the probability of serving in

the military is unrelated to birth year, because earnings are related to birth year. A regression analog for this

point is the result that even in a scenario with no omitted variables bias, the long regression generates more

precise estimates of the coe¢ cients on the variables included in a short regression whenever these variables

have some predictive power for outcomes because these covariates lead to a smaller residual variance (see

Section 3.1.3).

Hahn�s (1998) results raise the question of why we should ever bother with estimators that use the

propensity score. A philosophical argument is that the propensity score rightly focuses researcher attention on

models for treatment assignment, something about which we may have reasonably good information, instead

of the typically more complex and mysterious process determining outcomes. This view seems especially

compelling when treatment assignment is the outcome of human institutions or government regulations

while the process determining outcomes is more anonymous (e.g., a market). For example, in a time series

evaluation of the causal e¤ects of monetary policy, Angrist and Kuersteiner (2004) argue that we know

more about how the Federal Reserve sets interests rates than about the process determining GDP. In the

same spirit, it may also be easier to validate a model for treatment assignment than to validate a model for

outcomes (see, e.g., Rosenbaum and Rubin, 1985, for a version of this argument).

A more precise though purely statistical argument for using the propensity score is laid out in Angrist

and Hahn (2004). This paper shows that even though there is no asymptotic e¢ ciency gain from the use

of estimators based on the propensity score, there will often be a gain in precision in �nite samples. Since

all real data sets are �nite, this result is empirically relevant. Intuitively, if the covariates omitted from the

propensity score explain little of the variation in outcomes (in a purely statistical sense), it may then be

better to ignore them than to bear the statistical burden imposed by the need to estimate their e¤ects. This

is easy to see in studies using data sets such as the NLSY where there are hundreds of covariates that might

predict outcomes. In practice, we focus on a small subset of all possible covariates. This subset is chosen

with an eye to what predicts treatment as well as outcomes.

Finally, Hirano, Imbens, and Ridder (2003) provide an alternative asymptotic resolution of the �propen-

sity score paradox�generated by Hahn�s (1998) theorems. They show that even though estimates of treat-

ment e¤ects based on a known propensity score are ine¢ cient, for models with continuous covariates, a

Horvitz-Thompson-type weighting estimator is e¢ cient when weighting uses a non-parametric estimate of

the score. The fact that the propensity score is estimated and the fact that it is estimated non-parametrically
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are both key for the Hirano, Imbens, and Ridder conclusions.

Do the Hirano, Imbens, and Ridder (2003) results resolve the propensity-score paradox? For the moment,

we prefer the �nite-sample resolution given by Angrist and Hahn (2004). Their results highlight the fact that

it is the researchers�willingness to impose some restrictions on the score which gives propensity-score-based

inference its conceptual and statistical power. In Angrist (1998), for example, an application with high-

dimensional though discrete covariates, the unrestricted non-parametric estimator of the score is just the

empirical probability of treatment in each covariate cell. With this nonparametric estimator plugged in for

p(Xi), it�s straightforward to show that the sample analogs of (3.3.11) and (3.3.12) are algebraically equivalent

to the corresponding full-covariate matching estimators. Hence, it�s no surprise that score-based estimation

comes out e¢ cient, since full-covariate matching is the asymptotically e¢ cient benchmark. An essential

element of propensity score methods is the use of prior knowledge for dimension reduction. The statistical

payo¤ is an improvement in �nite-sample behavior. If you�re not prepared to smooth, restrict, or otherwise

reduce the dimensionality of the matching problem in a manner that has real empirical consequences, then

you might as well go for full covariate matching or saturated regression control.

3.3.3 Propensity-Score Methods vs. Regression

Propensity-score methods shift attention from the estimation of E[yijXi;di] to the estimation of the propen-

sity score, p(Xi) � E[dijXi]. This is attractive in applications where the latter is easier to model or

motivate. For example, Ashenfelter (1978) showed that participants in government-funded training pro-

grams often have su¤ered a marked pre-program dip in earnings, a pattern found in many later studies. If

this dip is the only thing that makes trainees special, then we can estimate the causal e¤ect of training on

earnings by controlling for past earnings dynamics. In practice, however, it�s hard to match on earnings

dynamics since earnings histories are both continuous and multi-dimensional. Dehejia and Wahba (1999)

argue in this context that the causal e¤ects of training programs are better estimated by conditioning on

the propensity score than by conditioning on the earnings histories themselves.

The propensity-score estimates reported by Dehejia and Wahba are remarkably close to the estimates

from a randomized trial that constitute their benchmark. Nevertheless, we believe regression should be the

starting point for most empirical projects. This is not a theorem; undoubtedly, there are circumstances

where propensity score matching provides more reliable estimates of average causal e¤ects. The �rst reason

we don�t �nd ourselves on the propensity-score bandwagon is practical: there are many details to be �lled in

when implementing propensity-score matching - such as how to model the score and how to do inference -

these details are not yet standardized. Di¤erent researchers might therefore reach very di¤erent conclusions,

even when using the same data and covariates. Moreover, as we�ve seen with the Horvitz-Thompson

estimands, there isn�t very much theoretical daylight between regression and propensity-score weighting. If

the regression model for covariates is fairly �exible, say, close to saturated, regression can be seen as a type
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of propensity-score weighting, so the di¤erence is mostly in the implementation. In practice you may be far

from saturation, but with the right covariates this shouldn�t matter.

The face-o¤ between regression and propensity-score matching is illustrated here using the same National

Supported Work (NSW) sample featured in Dehejia and Wahba (1999).25 The NSW is a mid-1970s program

that provided work experience to a sample with weak labor-force attachment. Somewhat unusually for it�s

time, the NSW was evaluated in a randomized trial. Lalonde�s (1986) path-breaking analysis compared

the results from the NSW randomized study to econometric results using non-experimental control groups

drawn from the PSID and the CPS. He came away pessimistic because plausible non-experimental methods

generated a wide range of results, many of which were far from the experimental estimates. Moreover,

Lalonde argued, an objective investigator, not knowing the results of the randomized trial, would be unlikely

to pick the best econometric speci�cations and observational control groups.

In a striking second take on the Lalonde (1986) �ndings, Dehejia and Wahba (1999) found that they

could come close to the NSW experimental results by matching the NSW treatment group to observational

control groups selected using the propensity score. They demonstrated this using various comparison groups.

Following Dehejia and Wahba (1999), we look again at two of the CPS comparison groups, �rst, a largely

unselected sample (CPS-1) and then a narrower comparison group selected from the recently unemployed

(CPS-3).

Table 3.3.2 (a replication of Table 1 in Dehejia and Wahba, 1999) reports descriptive statistics for the

NSW treatment group, the randomly selected NSW control group, and our two observational control groups.

The NSW treatment group and the randomly selected NSW control groups are younger, less educated, more

likely to be nonwhite, and have much lower earnings than the general population represented by the CPS-1

sample. The CPS-3 sample matches the NSW treatment group more closely but still shows some di¤erences,

particularly in terms of race and pre-program earnings.

Table 3.3.3 reports estimates of the NSW treatment e¤ect. The dependent variable is annual earnings in

1978, a year or two after treatment. Rows of the table show results with alternative sets of controls: none;

all the demographic variables in Table 3.3.2; lagged (1975) earnings; demographics plus lagged earnings;

demographics and two lags of earnings. All estimates are from regressions of 1978 earnings on a treatment

dummy plus controls (the raw treatment-control di¤erence appears in the �rst row).

Estimates using the experimental control group, reported in column 1, are in the order of $1,600-1,800.

Not surprisingly, these estimates vary little across speci�cations. In contrast, the raw earnings gap between

NSW participants and the CPS-1 sample, reported in column 2, is roughly $-8,500, suggesting this comparison

is heavily contaminated by selection bias. The addition of demographic controls and lagged earnings narrows

the gap considerably; the estimated treatment e¤ect reaches (positive) $800 in the last row. The results

25An similar but more extended propensity-score face-o¤ appears in the exchange beween Smith and Todd (2005) and Dehejia

(2005).
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are even better in column 3, which uses the narrower CPS-3 comparison group. The characteristics of this

group are much closer to the those of NSW participants; consistent with this, the raw earnings di¤erence

is only $-635. The fully-controlled estimate, reported in the last row, is close to $1,400, not far from the

experimental treatment e¤ect.

A drawback of the process taking us from CPS-1 to CPS-3 is the ad hoc nature of the rules used to

construct the smaller and more carefully-selected CPS-3 comparison group. The CPS-3 selection criteria

can be motivated by the NSW program rules, which favor individuals with low earnings and weak labor-force

attachment, but in practice, there are many ways to implement this. We�d therefore like a more systematic

approach to pre-screening. In a recent paper, Crump, Hotz, Imbens and Mitnik (2006) suggest that the

propensity score be used for systematic sample-selection as a precursor to regression estimation. This

contrasts with our earlier discussion of the propensity score as the basis for an estimator.

We implemented the Crump, et al. (2006) suggestion by �rst estimating the propensity score on a

pooled NSW-treatment and observational-comparison sample, and then picking only those observations

with 0:1 < p(Xi) < 0:9. In other words, the estimation sample is limited to observations with a predicted

probability of treatment equal to at least 10 percent, but no more than 90 percent. This ensures that

regressions are estimated with a sample including only covariate cells with there are at least a few treated

and control observations. Estimation using screened samples therefore requires no extrapolation to cells

without "common support", i.e. to cells where there is no overlap in the covariate distribution between

treatment and controls. Descriptive statistics for samples screened on the score (estimated using the full

set of covariates listed in the table) appear in the last two columns of Table 3.3.2. The covariate means in

screened CPS-1 and CPS-3 are much closer to the NSW means in column 1 than are the covariate means

from unscreened samples.

We explored the common-support screener further using alternative sets of covariates, but with the same

covariates used for both screening and the estimation of treatment e¤ects at each iteration. The resulting

estimates are displayed in the �nal two columns of Table 3.3.3. Controlling for demographic variables or

lagged earnings alone, these results di¤er little from those in columns 2-3. With both demographic variables

and a single lag of earnings as controls, however, the screened CPS-1 estimates are quite a bit closer to the

experimental estimates than are the unscreened results. Screened CPS-1 estimates with two lags of earnings

remain close to the experimental benchmark. On the other hand, the common-support screener improves

the CPS-3 results only slightly with a single lag of earnings and seems to be a step backward with two.

This investigation boosts our (already strong) faith in regression. Regression control for covariates does

a good job of eliminating selection bias in the CPS-1 sample in spite of a huge baseline gap. Restricting

the sample using our knowledge of program admissions criteria yields even better regression estimates with

CPS-3, about as good as Dehejia and Wahba�s (1999) propensity score matching results with two lags of

earnings. Systematic pre-screening to enforce common support seems like a useful adjunct to regression
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estimation with CPS-1, a large and coarsely-selected initial sample. The estimates in screened CPS-1 are

as good as unscreened CPS-3. We note, however, that the standard errors for estimates using propensity-

score-screened samples have not been adjusted to re�ect sampling variance in our estimates of the score.

An advantage of pre-screening using prior information, as in the step from CPS-1 to CPS-3, is that no such

adjustment is necessary.

3.4 Regression Details

3.4.1 Weighting Regression

Few things are as confusing to applied researchers as the role of sample weights. Even now, 20 years post-

Ph.D., we read the section of the Stata manual on weighting with some dismay. Weights can be used in a

number of ways, and how they are used may well matter for your results. Regrettably, however, the case for

or against weighting is often less than clear-cut, as are the speci�cs of how the weights should be programmed.

A detailed discussion of weighting pros and cons is beyond the scope of this book. See Pfe¤erman (1993)

and Deaton (1997) for two perspectives. In this brief subsection, we provide a few guidelines and a rationale

for our approach to weighting.

A simple rule of thumb for weighting regression is use weights when they make it more likely that the

regression you are estimating is close to the population target you are trying to estimate. If, for example, the

target (or estimand) is the population regression function, and the sample to be used for estimation is non-

random with sampling weights, wi, equal to the inverse probability of sampling observation i, then it makes

sense to use weighted least squares, weighting by wi (for this you can use Stata pweights or a SAS WEIGHT

statement). Weighting by the inverse sampling probability generates estimates that are consistent for the

population regression function even if the sample you have to work with is not a simple random sample.

A related weighting scenario is grouped data. Suppose that you would like to regress yi on Xi in

a random sample, presumably because you want to learn about the population regression vector � =

E[XiX0i]
�1E[Xiyi]. Instead of a random sample, however, you have data grouped at the level of Xi.

That is, you have estimates of E[yijXi = x] for each x, estimated using data from a random sample. Let

this average be denoted �yx, and suppose you also know nx, where nx=N is the relative frequency of x in the

underlying random sample. As we saw in Section 3.1.2, the regression of �yx on x, weighted by nx is the

same as the random-sample regression. Therefore, if your goal is to get back to the microdata regression,

it makes sense to weight by group size. We note, however, that macroeconomists, accustomed to working

with published averages and ignoring the underlying microdata, might disagree, or perhaps take the point

in principle but remain disinclined to buck tradition in their discipline, which favors the unweighted analysis

of aggregates.

If, on the other hand, the rationale for weighting has something to do with heteroskedasticity, as in many
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textbook discussions of weighting, we are even less sympathetic to weighting than the macroeconomists.

The argument for weighting under heteroskedasticity goes roughly like this: suppose you are interested in a

linear CEF, E[yijXi] =X0i�. The error term, de�ned as ei �yi -X0i�, may be heteroskedastic. That is, the

conditional variance function, E[e2i jXi] need not be constant. In this case, while the population regression

function is still equal to E[XiX0i]
�1E[Xiyi], the sample analog is ine¢ cient. A more precise estimator of the

linear CEF is weighted least squares, i.e., minimize the sum of squared errors weighted by an estimate of

E[e2i jXi]�1.

As noted in Section 3.1.3, an inherently heteroskedastic scenario is the LPM, where yi is a dummy

variable. Assuming the CEF is in fact linear, as it will be if the model is saturated, then P [yi = 1jXi] =X0i�

and therefore E
�
e2i jXi

�
=X0i�

�
1�X0i�

�
, which is obviously a function of Xi. This is an example of model-

based heteroskedasticity where in principle, the conditional variance function is easily constructed from

estimates of the underlying regression function. The e¢ cient weighted least squares estimator� a special

case of generalized least squares (GLS)� is to weight by
�
X0i�(1�X0i�)

��1
. In practice, because the CEF

has been assumed to be linear, these weights can be estimated in a �rst pass by OLS.

There are two reason why we prefer not to weight in this case (though we would use a heteroskedasticity-

consistent covariance matrix). First, in practice, the estimate of E[e2i jXi] may not be very good. If the

conditional variance model is a poor approximation and/or the estimates of it are very noisy (in the LPM,

this might mean the CEF is not really linear), weighted least squares estimates may have worse �nite-sample

properties than unweighted estimates. The inferences you draw based on asymptotic theory may therefore

be misleading, and the hoped for e¢ ciency gain may not materialize26 . Second, if the CEF is not linear, the

weighted least squares estimator is no more likely to estimate the CEF than is the unweighted estimator.

Moreover, the unweighted estimator still estimates something easy to interpret: it estimates the MMSE

linear approximation to the population CEF.

Of course, the GLS estimator also provides some sort of approximation, but the nature of this approxi-

mation depends on the weights. At a minimum, this makes it harder to compare your results to estimates

by other researchers, and opens up additional avenues for speci�cation searches when results depend on

weighting. Finally, an old caution comes to mind: �if it ain�t broke, don�t �x it.�The interpretation of the

population regression vector is una¤ected by heteroskedasticity, so why worry about it? Any e¢ ciency gain

from weighting is likely to be modest, and incorrect or poorly estimated weights can do more harm than

good.

3.4.2 Limited Dependent Variables and Marginal E¤ects

Many empirical studies involve variables that take on only a limited number of values. An example is the

Angrist and Evans (1998) investigation of the e¤ect of childbearing on female labor supply, discussed in

26Altonji and Segal (1996) discuss this point in a generalized method-of-moments context.
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Section 3.4.2 in this chapter and in the chapter on instrumental variables, below. This study is concerned

with the causal e¤ects of childbearing on parents�work and earnings. Because childbearing is likely to

be correlated with potential earnings, the study reports instrumental variables estimates based on sibling-

sex composition and multiple births, as well as OLS estimates. Almost every outcome in this study is

either binary (like employment status) or non-negative (like hours worked, weeks worked, and earnings).

Should the fact that a dependent variable is limited a¤ect empirical practice? Many econometrics textbooks

argue that, while OLS is �ne for continuous dependent variables, when the outcome of interest is a limited

dependent variable (LDV), linear regression models are inappropriate and nonlinear models such as Probit

and Tobit are preferred. In contrast, our view of regression as inheriting its legitimacy from the CEF makes

LDVness seem less central.

As always, a useful benchmark is a randomized experiment, where regression is simply a treatment-control

di¤erence. Consider regressions of various outcome variables on a randomly assigned regressor that indicates

one of the treatment groups in the Rand Health Insurance Experiment (HIE; Manning, et al, 1987). In this

ambitious experiment, probably the most expensive in American social science, the Rand Corporation set

up a small health insurance company that charged no premium. Nearly 6,000 participants in the study were

randomly assigned to health insurance plans with di¤erent features.

One of the most important features of any insurance plan is the portion of health care costs the insured

individual is expected to pay. The HIE randomly assigned individuals to many di¤erent plans. One plan

provided entirely free care, while the others included various combinations of co-payments, expenditure caps,

and deductibles so that patients covered some of their health care costs out-of-pocket. The main purpose

of the experiment was to learn whether the use of medical care is sensitive to cost and, if so, whether this

a¤ects health. The HIE results showed that those o¤ered free or low-cost medical care used more of it,

but they were not, for the most part, any healthier as a result. These �ndings helped pave the way for

cost-sensitive health insurance plans and managed care.

Most of the outcomes in the HIE are LDVs. These include dummies indicating whether an experimental

subject incurred any medical expenditures or was hospitalized in a given year and non-negative outcomes

such as the number of face-to-face doctor visits and gross annual medical expenses (whether paid by patient

or insurer). The expenditure variable is zero for about 20 percent of the sample. Results for two of the HIE

treatment groups are reproduced in Table 3.4.1, derived from the estimates reported in Table 2 of Manning,

et al. (1987). Table 3.4.1 shows average outcomes in the free care and individual deductible groups. The

latter group faced a deductible of $150 per person or $450 per family per year for outpatient care, after

which all costs were covered (There was no charge for inpatient care). The overall sample size in these two

groups was a little over 3,000.

To simplify the LDV discussion, suppose that the comparison between free care and deductible plans is
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Table 3.4.1: Average outcomes in two of the HIE treatment groups

Outpatient Prob. Any Prob. Any Total
Face-to- Expenses Admis- Medical Inpatient Expenses

Plan face visits (1984$) sions (%) (%) (1984$)

Free 4.55 340 .128 86.8 10.3 749
(.168) (10.9) (.0070) (.817) (.45) (39)

Individual
Deductible

3.02 235 .115 72.3 9.6 608
(.171) (11.9) (.0076) (1.54) (.55) (46)

Deductible
minus free

-1.53 -105 -0.013 -14.5 -0.7 -141
(.240) (16.1) (.0103) (1.74) (.71) (60)

Notes: Adapted from Manning (1987), Table 2. All standard errors (shown

in parentheses) are corrected for intertemporal and intrafamily correlations.

Amounts are in June 1984 dollars. Visits are face-to-face contacts with MD,

DO, or other health providers; excludes visits only for radiology, anesthesiology

or pathology services. Visits and expenses exclude dental care and outpatient

psychotherapy.

the only comparison of interest and that treatment was determined by simple random assignment.27 Let

di = 1 denote assignment to the deductible group. By virtue of random assignment, the di¤erence in means

between those with di = 1 and di = 0 identi�es the e¤ect of treatment on the treated. As in our earlier

discussion of experiments (Chapter 2):

E [yijdi = 1]� E [yijdi = 0] (3.4.1)

= E [y1ijdi = 1]� E [y0ijdi = 1]

= E [y1i � y0i]

because di is independent of potential outcomes. Also, as before, E [yijdi = 1]� E [yijdi = 0] is the slope

coe¢ cient in a regression of yi on di.

Equation (3.4.1) suggests that the estimation of causal e¤ects in experiments presents no special challenges

whether yi is binary, non-negative, or continuously distributed. The interpretation of the right-hand side

changes for di¤erent sorts of dependent variables, but you do not need to do anything special to get the

average causal e¤ect. For example, one of the HIE outcomes is a dummy denoting any medical expenditure.

27The HIE was considerably more complicated than described here. There were 14 di¤erent treatments, including assignment

to a prepaid HMO-like service. The experimental design did not use simple random assignment, but rather a more complicated

assignment scheme meant to ensure covariate balance acrosss groups.



72 CHAPTER 3. MAKING REGRESSION MAKE SENSE

Since the outcome here is a Bernoulli trial, we have

E[y1i � y0i] = E[y1i]� E[y0i] = P [y1i = 1]� P [y0i = 1]: (3.4.2)

This relation might a¤ect the language we use to describe the results but not the underlying calculation. In

the HIE, for example, comparisons across experimental groups, as on the left hand side of (3.4.1), show that

87 percent of those assigned to the free-care group used at least some care in a given year, while only 72

percent of those assigned to the deductible plan used care. The relatively modest $150 deductible therefore

had a marked e¤ect on use of care. The di¤erence between these two rates, �:15(s:e: = :017) is an estimate

of E[y1i�y0i], where yi is a dummy indicating any medical expenditure. Because the outcome here is a

dummy variable, the average causal e¤ect is also a causal e¤ect on usage rates or probabilities.

Recognizing that the outcome variable here is a probability, suppose instead that you use Probit to �t

the CEF in this case. No harm in trying! The Probit model is usually motivated by the assumption that

participation is determined by a latent variable, y�i , that satis�es

y�i = ��0 + �
�
1di � �i; (3.4.3)

where �i is distributed N(0; �2). Note that this variable cannot be actual medical expenditure since

expenditure is non-negative and therefore non-Normal, while Normally distributed variables are continuously

distributed on the Real line and can therefore be negative. Given the latent index model,

yi = 1[y�i > 0];

the CEF can be written

E[yijdi] = �[
��0 + �

�
1di

�
];

where �[�] is the Normal CDF. Therefore

E[yijdi] = �[
��0
�
] + f�[�

�
0 + �

�
1

�
]� �[�

�
0

�
]gdi:

This is a linear function of the regressor, di, so the slope coe¢ cient in the regression of yi on di is exactly

the di¤erence in Probit �tted values, �[�
�
0+�

�
1

� ]��[�
�
0

� ]: Note, however, that the Probit Coe¢ cients,
��0
� and

��1
� do not give us the size of e¤ect of di on participation until we feed them back into the Normal CDF

(though they do have the right sign).

One of the most important outcomes in the HIE is gross medical expenditure, in other words, health care

costs. Did subjects who faced a deductible use less care, as measured by the cost? In the HIE, the average

di¤erence in expenditures between the deductible and free-care groups was �141 dollars (s:e: = 60), about
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19% of the expenditure level in the free-care group. This calculation suggests that making patients pay a

portion of costs reduces expenditures quite a bit, though the estimate is not very precise.

Because expenditure outcomes are non-negative random variables, and sometimes equal to zero, their

expectation can be written

E[yijdi] = E[yijyi > 0;di]P [yi > 0jdi]:

The di¤erence in expenditure outcomes across treatment groups is

E [yijdi = 1]� E [yijdi = 0] (3.4.4)

= E [yijyi > 0;di = 1]P [yi > 0jdi = 1]� E [yijyi > 0;di = 0]P [yi > 0jdi = 0]

= fP [yi > 0jdi = 1]� P [yi > 0jdi = 0]g| {z }
participation e¤ect

E [yijyi > 0;di = 1]

+fE [yijyi > 0;di = 1]� E [yijyi > 0;di = 0]g| {z }
COP e¤ect

P [yi > 0jdi = 0] :

So the overall di¤erence in average expenditure can be broken up into two parts: the di¤erence in the

probability that expenditures are positive (often called a participation e¤ect), and the di¤erence in means

conditional on participation, a conditional-on-positive (COP) e¤ect. Again, however, this has no special

implications for the estimation of causal e¤ects; equation (3.4.1) remains true: the regression of yi on di

gives the population average treatment e¤ect for expenditures.

Good COP, Bad COP: Conditional-on-positive e¤ects

Because the e¤ect on a non-negative random variable like expenditure has two parts, some applied researchers

feel they should look at these parts separately. In fact, many use a "two-part model," where the �rst part

is an evaluation of e¤ect on participation and the second part looks at the COP e¤ects (see, e.g., Duan, et

al., 1983 and 1984 for such models applied to the HIE). The �rst part of (3.4.4) raises no special issues,

because, as noted above, the fact that yi is a dummy means only that average treatment e¤ects are also

di¤erences in probabilities. The problem with the two-part model is that the COP e¤ects do not have a

causal interpretation, even in a randomized trial. This is exactly the same selection problem raised in

Section 3.2.3, on bad control.

To analyze the COP e¤ect further, write

E [yijyi > 0;di = 1]� E [yijyi > 0;di = 0] (3.4.5)

= E [y1ijy1i > 0]� E [y0ijy0i > 0]

= E [y1i � y0ijy1i > 0]| {z }
causal e¤ect

+ fE [y0ijy1i > 0]� E [y0ijy0i > 0]g :| {z }
selection bias

This decomposition shows that the COP e¤ect is composed of two terms: a causal e¤ect for the subpopulation
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that uses medical care when it is free and the di¤erence in y0i between those who use medical care when it

is free and those who use medical care when they have to pay something. This second term is a form of

selection bias, though it is more subtle than the selection bias in Chapter 2.

Here selection bias arises because the experiment changes the composition of the group with positive

expenditures. The y0i > 0 population probably includes some low-cost users who would opt out of care

if they had to pay a deductible. In other words, it is larger and probably has lower costs on average than

the y1i > 0 group. The selection bias term is therefore positive, with the result that COP e¤ects are closer

to zero than the negative causal e¤ect, E[y1i�y0ijy1i > 0]. This is a version of the bad control problem

from Section 3.2.3: in a causal-e¤ects setting, yi > 0 is an outcome variable and therefore unkosher for

conditioning unless the treatment has no e¤ect on the likelihood that yi is positive.

One resolution of the non-causality of COP e¤ects relies on censored regression models like Tobit. These

models postulate a latent expenditure outcome for nonparticipants (e.g., Hay and Olsen, 1984). A traditional

Tobit formulation for the expenditure problem stipulates that the observed yi is generated by

yi = 1[y�i > 0]y
�
i

where y�i is a Normally distributed latent expenditure variable that can take on negative values. Because

y�i is not an LDV, Tobit proponents feel comfortable linking this to di with a traditional linear model, say,

equation (3.4.3). In this case, ��1 is the causal e¤ect of di on latent expenditure, y
�
i . This equation is de�ned

for everyone, whether yi is positive or not. There is no COP-style selection problem if we are happy to

study e¤ects on y�i :

But we are not happy with e¤ects on y�i . The �rst problem is that "latent health care expenditure" is a

puzzling construct.28 Health care expenditure really is zero for some people; this is not a statistical artifact

or due to some kind of censoring. So the notion of latent and potentially negative y�i is hard to grasp. There

is no data on y�i and there never will be. A second problem is that the link between the parameter ��1 in

the latent model and causal e¤ects on the observed outcome, yi, turns on distributional assumptions about

the latent variable. To establish this link we evaluate the expectation of yi given di to �nd

E [yijdi] = �
�
��0 + �

�
1di

�

�
[��0 + �

�
1di] + ��

�
��0 + �

�
1di

�

�
(3.4.6)

where � is the standard deviation of �i (see, e.g. McDonald and Mo¢ tt, 1980). This expression involves the

assumed Normality and homoskedasticity of �i and the assumption that yi can be represented as 1[y�i > 0]y
�
i ,

as well as the latent coe¢ cients.

28A generalization of Tobit is the sample selection model, where the latent variable determining participation is not the same

as the latent expenditure variable. See, e.g., Maddala (1983). The same conceptual problems related to the interpretation of

e¤ects on latent variables arise in the sample selection model as with Tobit.
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The Tobit CEF provides us with an expression for a treatment e¤ect on observed expenditure. Speci�-

cally,

E [yijdi = 1]� E [yijdi = 0] (3.4.7)

=

�
�

�
��0 + �

�
1

�

�
[��0 + �

�
1] + ��

�
��0 + �

�
1

�

��
�
�
�

�
�0
�

�
[��0] + ��

�
��0
�

��

a rather daunting expression. But since the only conditioning variable is a dummy variable, di, none of this

is necessary for the estimation of E[yijdi = 1]�E[yijdi = 0]. The slope coe¢ cient from an OLS regression

of yi on di recovers the CEF di¤erence on the left hand side of (3.4.7) whether or not you adopt a Tobit

model to explain the underlying structure.

COP e¤ects are sometimes motivated by a researcher�s sense that when the outcome distribution has a

mass point - that is, it piles up on particular values like zero - or a heavily skewed distribution, or both, then

an analysis of e¤ects on averages misses something. Analyses of e¤ects on averages indeed miss some things,

like changes in the probability of speci�c values, or a shift in quantiles away from the median. But why not

look at these distribution e¤ects directly? A sensible alternative to COP e¤ects looks directly at e¤ects on

distributions or quantiles. Distribution outcomes include the likelihood that annual medical expenditures

exceed zero, 100 dollars, 200 dollars, and so on. This puts 1[yi > c] for di¤erent choices of c on the left-hand

side of the regression of interest. Econometrically, these outcomes are all in the category of equation (3.4.2).

The idea of looking directly at distribution e¤ects with linear probability models is illustrated by Angrist

(2001), in an analysis of the e¤ects of childbearing on hours worked. Alternately, if quantiles provide a focal

point, we can use quantile regression to model them. Chapter 7 discusses this idea in detail.

Do Tobit-type latent-variable models ever make sense? Yes, if the data you are working with are truly

censored. True censoring means the latent variable has an empirical counterpart that is the outcome of

primary interest. A leading example from labor economics is CPS earnings data, which topcodes (censors)

very high values of earnings to protect respondent con�dentiality. Typically, we�re interested in the causal

e¤ect of schooling on earnings as it appears on respondents�tax returns, not their CPS-topcoded earnings.

Chamberlain (1994) shows that in some years, CPS topcoding reduces the measured returns to schooling con-

siderably, and proposes an adjustment for censoring based on a Tobit-style adaptation of quantile regression.

The use of quantile regression to model censored data is also discussed in Chapter 7.29

29We should note that our favorite regression example - a regression of log wages on schooling - may have a COP problem

since the sample of log wages naturally omits those with zero earnings. This leads to COP-style selection bias if education

a¤ects the probability of working. In practice, therefore, we focus on samples of prime-age males where participation rates are

high and reasonably stable across schooling groups (e.g., white men aged 40-49 in Figure 3.1.1).
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Covariates lead to nonlinearity

True censoring as with the CPS topcode is rare, a fact that leaves limited scope for constructive applications

of Tobit-type models in applied work. At this point, however, we have to hedge a bit. Part of the neatness

in the discussion of experiments comes from the fact that E[yijdi] is necessarily a linear function of di so

that regression and the CEF are one and the same. In fact, this CEF is linear for any function of yi,

including the distribution indicators, 1[yi > c]. In practice, of course, the explanatory variable of interest

isn�t always a dummy, and there are usually additional covariates in the CEF, in which case, E[yijXi;di]

is almost certainly nonlinear for LDVs. Intuitively, as predicted means get close to the dependent variable

boundaries, say because some covariate cells are close to the boundaries, the derivatives of the CEF for LDVs

get smaller (think, for example, of the how the Normal CDF �attens at extreme values).

The upshot is that in LDV models with covariates, regression need not �t the CEF perfectly. It remains

true, however, that the underlying CEF has a causal interpretation if the CIA holds. And if the CEF has a

causal interpretation, it seems fair to say that regression has a causal interpretation as well, because it still

provides the MMSE approximation to the CEF. Moreover, if the model for covariates is saturated, then

regression also estimates a weighted average treatment e¤ect similar to (3.3.1) and (3.3.3). Likewise, if the

regressor of interest is multi-valued or continuous, we get a weighted average derivative, as described by the

formulas in subsection 3.3.1.

And yet, we don�t often have enough data for the saturated-covariate regression speci�cation to be very

attractive. Regression will therefore miss some features of the CEF. For one thing, it may generate �tted

values outside the LDV boundaries. This fact bothers some researchers and has certainly generated a lot of

bad press for the linear probability model. One attractive feature of nonlinear models like Probit and Tobit

is that they produce CEFs that respect LDV boundaries. In particular, Probit �tted values are always

between zero and one, while Tobit �tted values are positive (this is not obvious from equation 3.4.6). We

might therefore prefer nonlinear models on simple curve-�tting grounds.

Point conceded. It�s important to emphasize, however, that the output from nonlinear models must be

converted into marginal e¤ects to be useful. Marginal e¤ects are the (average) changes in CEF implied by

a nonlinear model. Without marginal e¤ects, it�s hard to talk about the impact on observed dependent

variables. Continuing to assume the regressor of interest is di, population average marginal e¤ects can be

constructed either by di¤erencing

EfE[yijXi;di = 1]� E[yijXi;di = 0]g;

or by di¤erentiation: E
n
@E[yijXi;di]

@di

o
: Most people use derivatives when dealing with continuous or multi-

valued regressors as well.

How close do OLS regression estimates come to the marginal e¤ects induced by a nonlinear model like
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Probit or Tobit? We �rst derive the marginal e¤ects, and then show an empirical example. The Probit

CEF for a model with covariates is

E[yijXi;di] = �
�
X0i�

�
0 + �

�
1di

�

�
:

The average �nite di¤erence is therefore

E

�
�

�
X0i�

�
0 + �

�
1

�

�
� �

�
X0i�

�
0

�

��
: (3.4.8)

In practice, this can also be approximated by the average derivative,

E

�
�

�
X0i�

�
0 + �

�
1di

�

��
� (��1=�)

(Stata computes marginal e¤ects both ways but defaults to (3.4.8) for dummy regressors).

Similarly, generalizing equation (3.4.6) to a model with covariates, we have

E[yijXi;di] = �
�
X0i�

�
0 + �

�
1di

�

� �
X0i�

�
0 + �

�
1di
�
+ ��

�
X0i�

�
0 + �

�
1di

�

�

for a non-negative LDV. Tobit marginal e¤ects are almost always cast in terms of the average derivative,

which can be shown to be the surprisingly simple expression

E

�
�

�
X0i�

�
0 + �

�
1di

�

��
� ��1: (3.4.9)

See, e.g., Wooldridge (2006). One immediate implication of (3.4.9) is that the Tobit coe¢ cient, ��1 is always

too big relative to the e¤ect of di on yi. Intuitively, this is because - given the linear model for latent y�i

- the latent outcome always changes when di switches on or o¤. But real yi need not change: for many

people, it�s zero either way.

Table 3.4.2 compares regression and nonlinear marginal e¤ects for a regression of female employment and

hours of work, both LDVs, on measures of fertility. The estimates were constructed using one of the 1980

Census samples used by Angrist and Evans (1998) This sample includes married women aged 21-35 with at

least two children. The childbearing variables consist of either a dummy indicating additional childbearing

beyond two, or the total number of births. The covariates include linear terms in mothers�age, age at �rst

birth, race dummies (black and Hispanic), and mother�s education (dummies for high school graduates, some

college, and college graduates). The covariate model is not saturated, rather there are linear e¤ects and no

interactions, so the underlying CEF in this example is surely nonlinear.

Probit marginal e¤ects for the e¤ect of a dummy variable indicating more than two children are indistin-

guishable from OLS estimates of the same relation. This can be seen in columns 2, 3, and 4 of Table 3.4.2,
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the �rst row of which compares the estimates from di¤erent methods for the full 1980 sample. The OLS

estimate of the e¤ect of a third child is -.162, while the corresponding Probit marginal e¤ects are -.163 and

-.162. These were estimated using (3.4.8) in the �rst case and

E

�
�

�
X0i�

�
0 + �

�
1

�

�
� �

�
X0i�

�
0

�

�
jdi = 1

�

in the second (hence, a marginal e¤ect on the treated).

Tobit marginal e¤ects for the relation between fertility and hours worked are also quite close to the

corresponding OLS estimates, though not indistinguishable. This can be seen in columns 5 and 6. Compare,

for example, the Tobit estimates of -6.56 and -5.87 with the OLS estimate of -5.92 in column 2. Although

one Tobit estimate is 10 percent larger in absolute value, this seems unlikely to be of substantive importance.

The remaining columns of the table compare OLS to marginal e¤ects for an ordinal childbearing variable

instead of a dummy. These calculations all use derivatives to compute marginal e¤ects (labeled MFX).

Here too, the OLS and nonlinear marginal e¤ects estimates are similar for both Probit and Tobit.

It is sometimes said that Probit models can be expected to generated marginal e¤ects close to OLS

when the �tted values are close to .5 because the nonlinear CEF is roughly linear in the middle. We

therefore replicated the comparison of OLS and marginal e¤ects in a subsample with relatively high average

employment rates, non-white women over 30 who attended college and whose �rst birth was before age 20.

Although the average employment rate is 83 percent in this group, the OLS estimates and marginal e¤ects

are again similar.
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The upshot of this discussion is that while a nonlinear model may �t the CEF for LDVs more closely than

a linear model, when it comes to marginal e¤ects this probably matters little. This optimistic conclusion is

not a theorem, but as in the empirical example here, it seems to be fairly robustly true.

Why then, should we bother with nonlinear models and marginal e¤ects? One answer is that the

marginal e¤ects are easy enough to compute now that they are automated in packages like Stata. But

there are a number of decisions to make along the way (e.g., the weighting scheme, derivatives versus �nite

di¤erences) while OLS is standardized. Nonlinear life also promises to get considerably more complicated

when we start to think about IV and panel data. Finally, extra complexity comes into the inference step

as well, since we need standard errors for marginal e¤ects. The principle of Occam�s razor advises, "Entities

should not be multiplied unnecessarily." In this spirit, we quote our former teacher, Angus Deaton (1997),

pondering the nonlinear regression function generated by Tobit-type models:

Absent knowledge of F [the distribution of the errors], this regression function does not even

identify the ��s [Tobit coe¢ cients] - see Powell (1989) - but more fundamentally, we should ask

how it has come about that we have to deal with such an awkward, di¢ cult, and non-robust

object.

3.4.3 Why is Regression Called Regression and What Does Regression-to-the-

mean Mean?

The term regression originates with Francis Galton�s (1886) study of height. Galton, who worked with

samples of roughly-normally-distributed data on parents and children, noted that the CEF of a child�s height

given his parents�height is linear, with parameters given by the bivariate regression slope and intercept. Since

height is stationary (its distribution is not changing [much] over time), the bivariate regression slope is also

the correlation coe¢ cient, i.e., between zero and one.

The single regressor in Galton�s set-up, xi, is average parent height and the dependent variable, yi, is the

height the of adult children. The regression slope coe¢ cient, as always, is �1 =
Cov(yi;xi)
V (xi)

, and the intercept

is � = E [yi]� �1E [Xi]. But because height is not changing across generations, the mean and variance of

yi and xi are the same. Therefore,

�1 =
Cov (yi; xi)
V (xi)

=
Cov (yi; xi)p
V (xi)

p
V (yi)

= �xy

� = E [yi]� �1E [Xi] = �(1� �1) = �(1� �xy)

where �xy is the intergenerational correlation coe¢ cient in height and � = E [yi] = E [Xi] is population

average height. From this we get the linear CEF

E [yijxi] = �(1� �xy) + �xyxi;
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so the height of a child given his parents�height is therefore a weighted average of his parents�height and

the population average height. The child of tall parents will therefore not be as tall as they are, on average.

Likewise, for the short. To be speci�c, Pischke, who is 6�3", can expect his children to be tall, though not as

tall as he is. Thankfully, however, Angrist, who is 5�6", can expect his children to be taller than he is. Galton

called this property, "regression toward mediocrity in hereditary stature." Today, we call this "regression to

the mean."

Galton, who was Charles Darwin�s cousin, is also remembered for having founded the Eugenics Society,

dedicated to breeding better people. Indeed, his interest in regression came largely from this quest. We

conclude from this that the value of scienti�c ideas should not be judged by their author�s politics.

Galton does not seem to have shown much interest in multiple regression, our chief concern in this

chapter. Indeed, the regressions in Galton�s work are mechanical properties of distributions of stationary

random variables, almost identities, and certainly not causal. Galton, would have said so himself because he

objected to the Lamarckian idea (later promoted in Stalin�s Russia) that acquired traits could be inherited.

The idea that regression can be used for statistical control satisfyingly originates in an inquiry into the

determinants of poverty rates by George Udny Yule (1899). Yule, a statistician and student of Karl Pearson�s

(Pearson was Galton�s protégé) realized that Galton�s regression coe¢ cient could be extended to multiple

variables by solving the least squares normal equations that had been derived long before by Legendre and

Gauss. Yule�s (1899) paper appears to be the �rst publication containing multivariate regression estimates.

His model links changes in poverty rates in an area to changes in the administration of the English Poor

Laws, while controlling for population growth and the age distribution in the area. He was particularly

interested in whether out-relief, the practice of providing income support for poor people without requiring

them to move to the poorhouse, did not itself contribute to higher poverty rates. This is a well-de�ned

causal question of a sort that still occupies us today.30

Finally, we note that the history of regression is beautifully detailed in the book by Steven Stigler (1986).

Stigler is a famous statistician at the University of Chicago, but not quite as famous as his father, the

economist and Nobel laureate, George Stigler.

3.5 Appendix: Derivation of the average derivative formula

Begin with the regression of yi on si :

Cov(yi; si)
V (si)

=
E[h(si)(si � E[si])]
E[si(si � E[si])]

:

30Yule�s �rst applied paper on the poor laws was published in 1895 in the Economic Journal, where Pischke is proud to serve

as co-editor. The theory of multiple regression that goes along with this appears in Yule (1897).
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Let ��1 = lim
t!�1

h (t). By the fundamental theorem of calculus, we have:

h (si) = ��1 +

Z si

�1
h0 (t) dt:

Substituting for h(si), the numerator becomes

E[h(si)(si � E[si])] =
Z +1

�1

Z s

�1
h0 (t) (s� E[si])g(s)dtds

where g(s) is the density of si at s. Reversing the order of integration, we have

E[h(si)(si � E[si])] =
Z +1

�1
h0 (t)

Z +1

t

(s� E[si])g(s)dsdt:

The inner integral is easily seen to be equal to �t � fE[sijsi � t] � E[sijsi < t]gfP (si � t)[1 � P (si � t)g,

which is clearly non-negative. Setting si =yi, the denominator can similarly be shown to be the integral

of these weights. We therefore have a weighted average derivative representation of the bivariate regression

coe¢ cient, Cov(yi;si)V (si)
; equation (3.3.8) in the text. A similar formula for a regression with covariates, Xi, is

derived in the appendix to Angrist and Krueger (1999).
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