Unit 7: Multiple linear regression

1. Introduction to multiple linear regression

GOVT 3990 - Spring 2020
Cornell University

Outline

1. Housekeeping

2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} annlies a nenalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.
prediction
9. Conditions for MLR are (almost) the same as conditions for SLR
10. Summary

Announcements

- Project questions?

Outline

1. Housekeeping
2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.
prediction
9. Conditions for MLR are (almost) the same as conditions for SLR
10. Summary

Outline

1. Housekeeping

2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} annlies a nenalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.

prediction

7. Conditions for MLR are (almost) the same as conditions for SLR
8. Summary

(1) In MLR everything is conditional on all other variables in the model

- All estimates in a MLR for a given variable are conditional on all other variables being in the model.
- Slope:
- Numerical x : All else held constant, for one unit increase in x_{i}, y is expected to be higher / lower on average by b_{i} units.
- Categorical x : All else held constant, the predicted difference in y for the baseline and given levels of x_{i} is b_{i}.

Data from the ACS

A random sample of 783 observations from the 2012 ACS.

1. income: Yearly income (wages and salaries)
2. employment: Employment status, not in labor force, unemployed, or employed
3. hrs_work: Weekly hours worked
4. race: Race, White, Black, Asian, or other
5. age: Age
6. gender: gender, male or female
7. citizens: Whether respondent is a US citizen or not
8. time_to_work: Travel time to work
9. lang: Language spoken at home, English or other
10. married: Whether respondent is married or not
11. edu: Education level, hs or lower, college, or grad
12. disability: Whether respondent is disabled or not
13. birth_qrtr: Quarter in which respondent is born, jan thru mar, apr thru jun, jul thru sep, or oct thru dec

Activity: MLR interpretations

1. Interpret the intercept.
2. Interpret the slope for hrs_work.
3. Interpret the slope for gender.

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

Outline

1. Housekeeping

2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MIR
8. Model selection criterion depends on goal: significance vs.

prediction

7. Conditions for MLR are (almost) the same as conditions for SLR
8. Summary

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent citizen:yes

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent	citizen:yes
1, Citizen	1

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)

$$
\text { Race: }(k=4)
$$

Baseline: no

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Race: $(k=4)$
Baseline: White

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Race: $(k=4)$
Baseline: White
Respondent \quad race:black ${ }^{\text {race:asian }}$ race:other

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

$$
\text { Race: }(k=4)
$$

Baseline: White

Respondent	race:black	race:asian	race:other
1, White	0	0	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

$$
\text { Race: }(k=4)
$$

Baseline: White

Respondent	race:black	race:asian	race:other
1, White	0	0	0
2, Black	1	0	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

$$
\text { Race: }(k=4)
$$

Baseline: White

Respondent	race:black	race:asian	race:other
1, White	0	0	0
2, Black	1	0	0
3, Asian	0	1	0

(2) Categorical predictors and slopes for (almost) each level

- Each categorical variable, with k levels, added to the model results in $k-1$ parameters being estimated.
- It only takes $k-1$ columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / no ($k=2$)
Baseline: no

Respondent	citizen:yes
1, Citizen	1
2, Not-citizen	0

$$
\text { Race: }(k=4)
$$

Baseline: White

Respondent	race:black	race:asian	race:other
1, White	0	0	0
2, Black	1	0	0
3, Asian	0	1	0
4, Other	0	0	1

Your turn

All else held constant, how do incomes of those born January thru March compare to those born April thru June?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

All else held constant, those born Jan thru Mar make, on average,
(a) $\$ 2,043.42$
less
(b) $\$ 2,043.42$
(c) $\$ 4978.12$
less
(d) $\$ 4978.12$
more

Your turn

All else held constant, how do incomes of those born January thru March compare to those born April thru June?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

All else held constant, those born Jan thru Mar make, on average,
(a) $\$ 2,043.42$
less
(b) $\$ 2,043.42$
(c) $\$ 4978.12$
less
(d) $\$ 4978.12$
more

Outline

1. Housekeeping
2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.
prediction
9. Conditions for MLR are (almost) the same as conditions for SLR
10. Summary

(3) Inference for MLR: model as a whole + individual slopes

- Inference for the model as a whole: F-test, $d f_{1}=p$, $d f_{2}=n-k-1$
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$
H_{A} : At least one of the $\beta_{i} \neq 0$

(3) Inference for MLR: model as a whole + individual slopes

- Inference for the model as a whole: F-test, $d f_{1}=p$, $d f_{2}=n-k-1$
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$
H_{A} : At least one of the $\beta_{i} \neq 0$
- Inference for each slope: T-test, $d f=n-k-1$
- HT:
$H_{0}: \beta_{1}=0$, when all other variables are included in the model $H_{A}: \beta_{1} \neq 0$, when all other variables are included in the model
- Cl: $b_{1} \pm T_{d f}^{\star} S E_{b_{1}}$

Model output

```
Coefficients:
(Intercept)
hrs_work
raceblack
raceasian
raceother
age
genderfemale
citizenyes
time_to_work
langother
marriedyes
educollege
edugrad
disabilityyes
birth_qrtrapr thru jun -2043.42 4978.12 -0.410 0.681569
birth_qrtrjul thru sep 3036.02 4853.19 0.626 0.531782
birth_qrtroct thru dec 2674.11 5038.45 0.531 0.595752
Residual standard error: 48670 on 766 degrees of freedom
    (60 observations deleted due to missingness)
Multiple R-squared: 0.3126,^^IAdjusted R-squared: 0.2982
F-statistic: 21.77 on 16 and 766 DF, p-value: < 2.2e-16
```


Your turn

True / False: The F test yielding a significant result means the model fits the data well.
(a) True
(b) False

Your turn

True / False: The F test yielding a significant result means the model fits the data well.
(a) True
(b) False

The F test yielding a significant result doesn't mean the model fits the data well, it just means at least one of the β s is non-zero. Whether or not the model fit the data well is evaluated based on model diagnostics.

Your turn

True / False: The F test not yielding a significant result means individual variables included in the model are not good predictors of y.
(a) True
(b) False

Your turn

True / False: The F test not yielding a significant result means individual variables included in the model are not good predictors of y.
(a) True
(b) False

The F test not yielding a significant result doesn't mean individuals variables included in the model are not good predictors of y, it just means that the combination of these variables doesn't yield a good model.

Significance also depends on what else is in the model

Model 1:	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	-15342.76	11716.57	-1.309	0.190760
hrs_work	1048.96	149.25	7.028	$4.63 \mathrm{e}-12$
raceblack	-7998.99	6191.83	-1.292	0.196795
raceasian	29909.80	9154.92	3.267	0.001135
raceother	-6756.32	7240.08	-0.933	0.351019
age	565.07	133.77	4.224	$2.69 \mathrm{e}-05$
genderfemale	-17135.05	3705.35	-4.624	$4.41 \mathrm{e}-06$
citizenyes	-12907.34	8231.66	-1.568	0.117291
time_to_work	90.04	79.83	1.128	0.259716
langother	-10510.44	5447.45	-1.929	0.054047
marriedyes	5409.24	3900.76	1.387	0.165932
educollege	15993.85	4098.99	3.902	0.000104
edugrad	59658.52	5660.26	10.540	$<2 \mathrm{e}-16$
disabilityyes	-14142.79	6639.40	-2.130	0.033479
birth_qrtrapr thru jun	-2043.42	4978.12	-0.410	0.681569
birth_qrtrjul thru sep	3036.02	4853.19	0.626	0.531782
birth_qrtroct thru dec	2674.11	5038.45	0.531	0.595752

Model 1:	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
(Intercept)	-15342.76	11716.57	-1.309	0.190760
hrs_work	1048.96	149.25	7.028	$4.63 \mathrm{e}-12$
raceblack	-7998.99	6191.83	-1.292	0.196795
raceasian	29909.80	9154.92	3.267	0.001135
raceother	-6756.32	7240.08	-0.933	0.351019
age	565.07	133.77	4.224	$2.69 \mathrm{e}-05$
genderfemale	-17135.05	3705.35	-4.624	$4.41 \mathrm{e}-06$
citizenyes	-12907.34	8231.66	-1.568	0.117291
time_to_work	90.04	79.83	1.128	0.259716
langother	-10510.44	5447.45	-1.929	0.054047
marriedyes	5409.24	3900.76	1.387	0.165932
educollege	15993.85	4098.99	3.902	0.000104
edugrad	59658.52	5660.26	10.540	$<2 \mathrm{e}-16$
disabilityyes	-14142.79	6639.40	-2.130	0.033479
birth_qrtrapr thru jun	-2043.42	4978.12	-0.410	0.681569
birth_qrtrjul thru sep	3036.02	4853.19	0.626	0.531782
birth_qrtroct thru dec	2674.11	5038.45	0.531	0.595752

Model 2:	Estimate Std. Error	t value	$\operatorname{Pr}(>\mid \mathrm{t\mid})$		
(Intercept)	-22498.2	8216.2	-2.738	0.00631	
hrs_work	1149.7	145.2	7.919	$7.60 \mathrm{e}-15$	
raceblack	-7677.5	6350.8	-1.209	0.22704	
raceasian	38600.2	8566.4	4.506	$7.55 \mathrm{e}-06$	
raceother	-7907.1	7116.2	-1.111	0.26683	
age	533.1	131.2	4.064	$5.27 \mathrm{e}-05$	
genderfemale	-15178.9	3767.4	-4.029	$6.11 \mathrm{e}-05$	
marriedyes	8731.0	3956.8	2.207	0.02762	<----

Outline

1. Housekeeping

2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.

prediction

7. Conditions for MLR are (almost) the same as conditions for SLR
8. Summary

(4) Adjusted R^{2} applies a penalty for additional variables

- When any variable is added to the model R^{2} increases.
- When any variable is added to the model R^{2} increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^{2} does not increase.

(4) Adjusted R^{2} applies a penalty for additional variables

- When any variable is added to the model R^{2} increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^{2} does not increase.

Adjusted R^{2}

$$
R_{a d j}^{2}=1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-k-1}\right)
$$

where n is the number of cases and k is the number of sloped estimated in the model.

```
Analysis of Variance Table
Response: income
Df Sum Sq Mean Sq F value Pr(>F)
hrs_work 1 3.0633e+11 3.0633e+11 129.3025 < 2.2e-16 ***
race }\quad37.1656e+10 2.3885e+10 10.0821 1.608e-06 *******
age 1 7.6008e+10 7.6008e+10 32.0836 2.090e-08 ***
gender 1 4.8665e+10 4.8665e+10 20.5418 6.767e-06 ***
citizen 1 1.1135e+09 1.1135e+09 0.4700 0.49319
time_to_work 1 3.5371e+09 3.5371e+09 1.4930 0.22213
lang 1 1.2815e+10 1.2815e+10 5.4094 0.02029 *
married 1 1.2190e+10 1.2190e+10 5.1453 0.02359 *
edu 2 2.7867e+11 1.3933e+11 58.8131<2.2e-16 ***
disability 1 1.0852e+10 1.0852e+10 4.5808 0.03265 *
birth_qrtr 3 3.3060e+09 1.1020e+09 0.4652 0.70667
Residuals 766 1.8147e+12 2.3691e+09
Total 782 2.6399e+12
```

$R_{a d j}^{2}=1-\left(\frac{1.8147 e+12}{2.6399 e+12} \times \frac{783-1}{783-16-1}\right) \approx 1-0.7018=0.2982$

Your turn

True / False: For a model with at least one predictor, $R_{a d j}^{2}$ will always be smaller than R^{2}.
(a) True
(b) False

Your turn

True / False: For a model with at least one predictor, $R_{a d j}^{2}$ will always be smaller than R^{2}.
(a) True
(b) False

Because k is never negative, $R_{a d j}^{2}$ will always be smaller than R^{2}.

$$
R_{a d j}^{2}=1-\left(\frac{S S_{\text {Error }}}{S S_{\text {Total }}} \times \frac{n-1}{n-k-1}\right)
$$

Your turn

True / False: Adjusted R^{2} tells us the percentage of variability in the response variable explained by the model.
(a) True
(b) False

Your turn

True / False: Adjusted R^{2} tells us the percentage of variability in the response variable explained by the model.
(a) True
(b) False
R^{2} tells us the percentage of variability in the response variable explained by the model, adjusted R^{2} is only useful for model selection.

Outline

1. Housekeeping
2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} annlies a nenalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.
prediction
9. Conditions for MLR are (almost) the same as conditions for SLR
10. Summary

(5) Avoid collinearity in MLR

- Two predictor variables are said to be collinear when they are correlated, and this collinearity (also called multicollinearity) complicates model estimation.

Remember: Predictors are also called explanatory or independent variables, so they should be independent of each other.

(5) Avoid collinearity in MLR

- Two predictor variables are said to be collinear when they are correlated, and this collinearity (also called multicollinearity) complicates model estimation.

Remember: Predictors are also called explanatory or independent variables, so
they should be independent of each other.

- We don't like adding predictors that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest best model, i.e. parsimonious model.

(5) Avoid collinearity in MLR

- Two predictor variables are said to be collinear when they are correlated, and this collinearity (also called multicollinearity) complicates model estimation.

Remember: Predictors are also called explanatory or independent variables, so
they should be independent of each other.

- We don't like adding predictors that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest best model, i.e. parsimonious model.
- In addition, addition of collinear variables can result in unreliable estimates of the slope parameters.

(5) Avoid collinearity in MLR

- Two predictor variables are said to be collinear when they are correlated, and this collinearity (also called multicollinearity) complicates model estimation.

Remember: Predictors are also called explanatory or independent variables, so they should be independent of each other.

- We don't like adding predictors that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest best model, i.e. parsimonious model.
- In addition, addition of collinear variables can result in unreliable estimates of the slope parameters.
- While it's impossible to avoid collinearity from arising in observational data, experiments are usually designed to control for correlated predictors.

Outline

1. Housekeeping

2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MIR
8. Model selection criterion depends on goal: significance vs. prediction
9. Conditions for MLR are (almost) the same as conditions for SLR
10. Summary
(6) Model selection criterion depends on goal: significance vs. prediction

- If the goal is to find the set of statistically predictors of y \rightarrow use p-value selection.
(6) Model selection criterion depends on goal: significance vs. prediction
- If the goal is to find the set of statistically predictors of y \rightarrow use p-value selection.
- If the goal is to do better prediction of $y \rightarrow$ use adjusted R^{2} selection.
- If the goal is to find the set of statistically predictors of y \rightarrow use p-value selection.
- If the goal is to do better prediction of $y \rightarrow$ use adjusted R^{2} selection.
- Either way, can use backward elimination or forward selection.
- If the goal is to find the set of statistically predictors of y \rightarrow use p-value selection.
- If the goal is to do better prediction of $y \rightarrow$ use adjusted R^{2} selection.
- Either way, can use backward elimination or forward selection.
- Expert opinion and focus of research might also demand that a particular variable be included in the model.

Your turn

Using the p-value approach, which variable would you remove from the model first?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

(a) race:other
(b) race
(d) birth_qrtr:apr thru jun
(e) birth_qrtr
(c) time_to_work

Your turn

Using the p-value approach, which variable would you remove from the model first?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

(a) race:other
(b) race
(c) time_to_work
(d) birth_qrtr:apr thru jun
(e) birth_qrtr

Your turn

Using the p-value approach, which variable would you remove from the model next?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-14022.48	11137.08	-1.26	0.21
hrs_work	1045.85	149.05	7.02	0.00
raceblack	-7636.32	6177.50	-1.24	0.22
raceasian	29944.35	9137.13	3.28	0.00
raceother	-7212.57	7212.25	-1.00	0.32
age	559.51	133.27	4.20	0.00
genderfemale	-17010.85	3699.19	-4.60	0.00
citizenyes	-13059.46	8219.99	-1.59	0.11
time_to_work	88.77	79.73	1.11	0.27
langother	-10150.41	5431.15	-1.87	0.06
marriedyes	5400.41	3896.12	1.39	0.17
educollege	16214.46	4089.17	3.97	0.00
edugrad	59572.20	5631.33	10.58	0.00
disabilityyes	-14201.11	6628.26	-2.14	0.03

(a) married
(d) race:black
(b) race
(e) time_to_work
(c) race:other

Your turn

Using the p-value approach, which variable would you remove from the model next?

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	-14022.48	11137.08	-1.26	0.21
hrs_work	1045.85	149.05	7.02	0.00
raceblack	-7636.32	6177.50	-1.24	0.22
raceasian	29944.35	9137.13	3.28	0.00
raceother	-7212.57	7212.25	-1.00	0.32
age	559.51	133.27	4.20	0.00
genderfemale	-17010.85	3699.19	-4.60	0.00
citizenyes	-13059.46	8219.99	-1.59	0.11
time_to_work	88.77	79.73	1.11	0.27
langother	-10150.41	5431.15	-1.87	0.06
marriedyes	5400.41	3896.12	1.39	0.17
educollege	16214.46	4089.17	3.97	0.00
edugrad	59572.20	5631.33	10.58	0.00
disabilityyes	-14201.11	6628.26	-2.14	0.03

(a) married
(d) race:black
(b) race
(e) time_to_work
(c) race:other

Outline

1. Housekeeping

2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLR: model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MLR
8. Model selection criterion depends on goal: significance vs.

prediction

7. Conditions for MLR are (almost) the same as conditions for SLR
8. Summary

Important regardless of doing inference

- Linearity \rightarrow randomly scattered residuals around 0 in the residuals plot

(7) Conditions for MLR are (almost) the same as conditions for SLR

Important regardless of doing inference

- Linearity \rightarrow randomly scattered residuals around 0 in the residuals plot

Important for doing inference

- Nearly normally distributed residuals \rightarrow histogram or normal probability plot of residuals
- Constant variability of residuals (homoscedasticity) \rightarrow no fan shape in the residuals plot
- Independence of residuals (and hence observations) \rightarrow depends on data collection method, often violated for time-series data

(7) Conditions for MLR are (almost) the same as conditions for SLR

Important regardless of doing inference

- Linearity \rightarrow randomly scattered residuals around 0 in the residuals plot

Important for doing inference

- Nearly normally distributed residuals \rightarrow histogram or normal probability plot of residuals
- Constant variability of residuals (homoscedasticity) \rightarrow no fan shape in the residuals plot
- Independence of residuals (and hence observations) \rightarrow depends on data collection method, often violated for time-series data
- Also important to make sure that your explanatory variables are not collinear

Your turn

Which of the following is the appropriate plot for checking the homoscedasticity condition in MLR?
(a) scatterplot of residuals vs. \hat{y}
(b) scatterplot of residuals vs. x
(c) histogram of residuals
(d) normal probability plot of residuals
(e) scatterplot of residuals vs. order of data collection

Your turn

Which of the following is the appropriate plot for checking the homoscedasticity condition in MLR?
(a) scatterplot of residuals vs. \hat{y}
(b) scatterplot of residuals vs. x
(c) histogram of residuals
(d) normal probability plot of residuals
(e) scatterplot of residuals vs. order of data collection

Plotting residuals against \hat{y} (predicted, or fitted, values of y) allows us to evaluate the whole model as a whole as opposed to homoscedasticity with regards to just one of the explanatory variables in the model.

Outline

1. Housekeeping
2. Main ideas
3. In MLR everything is conditional on all other variables in the model
4. Categorical predictors and slopes for (almost) each level
5. Inference for MLD. model as a whole + individual slopes
6. Adjusted R^{2} applies a penalty for additional variables
7. Avoid collinearity in MILR
8. Model selection criterion depends on goal: significance vs.
prediction
9. Conditions for MLR are (almost) the same as conditions for SLR
10. Summary

Summary of main ideas

1. ??
2. ??
3. ??
4. ??
5. ??
6. ??
7. ??
