Unit 2: Probability and distributions

1. Probability and conditional probability

GOVT 3990 - Spring 2017

Cornell University

Outline

1. Main ideas
2. Disjoint and independent do not mean the same thing
3. Application of the addition rule depends on disjointness of events
4. Bayes' theorem works for all types of events

2. Summary

Outline

1. Main ideas
2. Disjoint and independent do not mean the same thing
3. Application of the addition rule depends on disjointness of
events
4. Bayes' theorem works for all types of events

2. Summary

1. Disjoint and independent do not mean the same thing

- Disjoint (mutually exclusive) events cannot happen at the same time
- A voter cannot register as a Democrat and a Republican at the same time
- But they might be a Republican and a Moderate at the same time - non-disjoint events
- For disjoint A and $\mathrm{B}: ~ P(A$ and $B)=0$

1. Disjoint and independent do not mean the same thing

- Disjoint (mutually exclusive) events cannot happen at the same time
- A voter cannot register as a Democrat and a Republican at the same time
- But they might be a Republican and a Moderate at the same time - non-disjoint events
- For disjoint A and $\mathrm{B}: P(A$ and $B)=0$
- If A and B are independent events, having information on A does not tell us anything about B (and vice versa)
- If A and B are independent:
- $P(A \mid B)=P(A)$
- $P(A$ and $B)=P(A) \times P(B)$

Outline

1. Main ideas
2. Disjoint and independent do not mean the same thing
3. Application of the addition rule depends on disjointness of events
4. Bayes' theorem works for all types of events

2. Summary

- General addition rule: $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
- A or B = either A or B or both
- General addition rule: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
- A or B = either A or B or both
disjoint events:
P(A or B)
$=P(A)+P(B)-P(A$ and $B)$
$=0.4+0.3-0=0.7$

2. Application of the addition rule depends on disjointness of events

- General addition rule: $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$
- A or $B=$ either A or B or both
disjoint events:
P(A or B)
$=P(A)+P(B)-P(A$ and $B)$
$=0.4+0.3-0=0.7$
non-disjoint events:

$$
\begin{aligned}
& P(A \text { or } B) \\
& =P(A)+P(B)-P(A \text { and } B) \\
& =0.4+0.3-0.02=0.68
\end{aligned}
$$

Outline

1. Main ideas
2. Disjoint and independent do not mean the same thing
3. Application of the addition rule depends on disjointness of
events
4. Bayes' theorem works for all types of events
5. Summary

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$
disjoint events:
- We know $P(A \mid B)=0$, since
if B happened A could not have happened

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$
disjoint events:
- We know $P(A \mid B)=0$, since
if B happened A could not have happened
- $P(A$ and $B)$
$=P(A \mid B) \times P(B)$

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$
disjoint events:
- We know $P(A \mid B)=0$, since
if B happened A could not have happened
- $P(A$ and $B)$
$=P(A \mid B) \times P(B)$
$=0 \times P(B)=0$

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$
disjoint events:
- We know $P(A \mid B)=0$, since if B happened A could not have happened
- $P(A$ and $B)$
$=P(A \mid B) \times P(B)$
$=0 \times P(B)=0$
independent events:
- We know $P(A \mid B)=P(A)$, since knowing B doesn't tell us anything about A

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$
disjoint events:
- We know $P(A \mid B)=0$, since if B happened A could not have happened
- $P(A$ and $B)$
$=P(A \mid B) \times P(B)$
$=0 \times P(B)=0$
independent events:
- We know $P(A \mid B)=P(A)$, since knowing B doesn't tell us anything about A
- $P(A$ and $B)$

$$
=P(A \mid B) \times P(B)
$$

3. Bayes' theorem works for all types of events

- Bayes' theorem: $P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}$
- ... can be rewritten as: $P(A$ and $B)=P(A \mid B) \times P(B)$
disjoint events:
- We know $P(A \mid B)=0$, since if B happened A could not have happened
- $P(A$ and $B)$
$=P(A \mid B) \times P(B)$
$=0 \times P(B)=0$
independent events:
- We know $P(A \mid B)=P(A)$, since knowing B doesn't tell us anything about A
- $P(A$ and $B)$

$$
\begin{aligned}
& =P(A \mid B) \times P(B) \\
& =P(A) \times P(B)
\end{aligned}
$$

Application exercise: 2.1 Probability and conditional probability

Outline

1. Main ideas

1. Disjoint and independent do not mean the same thing
2. Application of the addition rule depends on disjointness of
events
3. Bayes' theorem works for all types of events
4. Summary

Summary of main ideas

1. Disjoint and independent do not mean the same thing
2. Application of the addition rule depends on disjointness of events
3. Bayes' theorem works for all types of events
